Colloid and Polymer Science

, Volume 293, Issue 1, pp 1–22 | Cite as

Recycling metals by controlled transfer of ionic species between complex fluids: en route to “ienaics”

  • Thomas Zemb
  • Caroline Bauer
  • Pierre Bauduin
  • Luc Belloni
  • Christophe Déjugnat
  • Olivier Diat
  • Véronique Dubois
  • Jean-François Dufrêche
  • Sandrine Dourdain
  • Magali Duvail
  • Chantal Larpent
  • Fabienne Testard
  • Stéphane Pellet-Rostaing
Invited Review

Abstract

Recycling chemistry of metals and oxides relies on three steps: dissolution, separation and material reformation. We review in this work the colloidal approach of the transfer of ions between two complex fluids, i.e. the mechanism at the basis of the liquid-liquid extraction technology. This approach allows for rationalizing in a unified model transformation such as accidently splitting from two to three phases, or uncontrolled viscosity variations, as linked to the transformation in the phase diagram due to ion transfer. Moreover, differences in free energies associated to ion transfer between phases that are the origin of the selectivity need to be considered at the meso-scale beyond parameterization of an arbitrary number of competing “complexes”. Entropy and electrostatics are taken into account in relation to solvent formulation. By analogy with electronics dealing about electrons transported in conductors and semi-conductors, this “ienaic” approach deals with ions transported between nanostructures present in colloidal fluids under the influence of chemical potential gradients between nanostructures coexisting in colloidal fluids. We show in this review how this colloidal approach generalizes the multiple chemical equilibrium models used in supra-molecular chemistry. Statistical thermodynamics applied to self-assembled fluids requires only a few measurable parameters to predict liquid-liquid extraction isotherms and selectivity in multi-phase chemical systems containing at least one concentrated emulsified water in oil (w/o) or oil in water (o/w) microemulsion.

Keywords

Ieanics Liquid-liquid extraction Self-assembly Free energy of transfer Ion selectivity Adsoprtion isotherm 

References

  1. 1.
    Rydberg J, Cox M, Musikas C, Choppin GR (2004) Solvent extraction principles and practice. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Bauduin P, Testard F, Zemb T (2008) Solubilization in alkanes by alcohols as reverse hydrotropes or “lipotropes”. J Phys Chem B 112:12354–12360. doi:10.1021/jp804668n Google Scholar
  3. 3.
    Bauduin P, Zemb T (2014) Perpendicular and lateral equations of state in layered systems of amphiphiles. Curr Opin Colloid Interface Sci 19:9–16. doi:10.1016/j.cocis.2014.02.002 Google Scholar
  4. 4.
    Dorsey JG, Dill KA (1989) The molecular mechanism of retention in reversed-phase liquid-chromatography. Chem Rev 89:331–346Google Scholar
  5. 5.
    Leontidis E, Christoforou M, Georgiou C, Delclos T (2014) The ion–lipid battle for hydration water and interfacial sites at soft-matter interfaces. Curr Opin Colloid Interface Sci 19:2–8. doi:10.1016/j.cocis.2014.02.003 Google Scholar
  6. 6.
    Leodidis EB, Hatton TA (1990) Amino acids in AOT reversed micelles. 1. Determination of interfacial partition coefficients using the phase-transfer method. J Phys Chem 94:6400–6411Google Scholar
  7. 7.
    Leodidis EB, Hatton TA (1990) Amino acids in AOT reversed micelles. 2. The hydrophobic effect and hydrogen bonding as driving forces for interfacial solubilization. J Phys Chem 94:6411–6420. doi:10.1021/j100379a047 Google Scholar
  8. 8.
    Leodidis EB, Bommarius AS, Hatton TA (1991) Amino acids in reversed micelles. 3. Dependence of the interfacial partition coefficient on excess phase salinity and interfacial curvature. J Phys Chem 95:5943–5956. doi:10.1021/j100168a043 Google Scholar
  9. 9.
    Leodidis EB, Hatton TA (1991) Amino acids in reversed micelles. 4. Amino acids as cosurfactants. J Phys Chem 95:5957–5965Google Scholar
  10. 10.
    Testard F, Zemb T (1998) Excess of solubilization of lindane in nonionic surfactant micelles and microemulsions. Langmuir: the ACS journal of surfaces and colloidsGoogle Scholar
  11. 11.
    Bollesteros MJ, Calor JN, Costenoble S, Montuir M (2012) Implementation of americium separation from a PUREX raffinate. Procedia…Google Scholar
  12. 12.
    Carrott M, Bell K, Brown J et al (2014) Development of a new flowsheet for Co-Separating the transuranic actinides: the “Euro-Ganex” process. Solvent Extraction Ion Exch 32:447–467. doi:10.1080/07366299.2014.896580 Google Scholar
  13. 13.
    Rat B, Heres X, Hill C et al (2000) Modeling and application of an actinide/lanthanide separation flowsheetGoogle Scholar
  14. 14.
    Sorel C, Baron P, Dinh B, et al (2011) The simple solution modeling implemented in the PAREX code to simulate solvent extraction operationsGoogle Scholar
  15. 15.
    Poinssot C, Boullis B, Rostaing C (2012) Main results of the French program on Partitioning and Transmutation of Minor Actinides. MRS ProceedingsGoogle Scholar
  16. 16.
    Evans DF, Wennerström H (1999) The colloidal domain. Wiley-VCHGoogle Scholar
  17. 17.
    Wennerström H, Lindman B (1979) Micelles. Physical chemistry of surfactant association. Phys RepGoogle Scholar
  18. 18.
    Eicke HF (1980) Surfactants in nonpolar solvents. In: Micelles. Springer-Verlag, Berlin/Heidelberg, pp 85–145Google Scholar
  19. 19.
    Erlinger C, Gazeau DD, Zemb T et al (1998) Effect of nitric acid on phase behavior, microstructure and interactions between aggergates in the system DMDBTDMA, dodecane, water. Solvent Extraction Ion Exch 16:707–738. doi:10.1080/07366299808934549 Google Scholar
  20. 20.
    Zemb T, Tache O, Né F, Spalla O (2003) A high sensitivity pinhole camera for soft condensed matter. J Appl Crystallogr 36:800–805. doi:10.1107/S0021889803001808 Google Scholar
  21. 21.
    Ne F, Gazeau DD, Lambard J et al (1993) Characterization of an image-plate detector used for quantitative small-angle-scattering studies. J Appl Crystallogr 26:763–773. doi:10.1107/S002188989300487X Google Scholar
  22. 22.
    Ferru G, Gomes Rodrigues D, Berthon L et al (2014) Elucidation of the structure of organic solutions in solvent extraction by combining molecular dynamics and X-ray scattering. Angew Chem Int Ed Engl 53:5346–5350. doi:10.1002/anie.201402677 Google Scholar
  23. 23.
    Kolařík Z, Pankova H (1966) Acidic organophosphorus extractants—I Extraction of lanthanides by means of dialkyl phosphoric acids—effect of structure and size of alkyl group. J Inorg Nucl Chem 28:2325–2333Google Scholar
  24. 24.
    Kolarik Z (2008) Complexation and separation of Lanthanides(III) and Actinides(III) by Heterocyclic N-donors in solutions. Chem Rev 108:4208–4252. doi:10.1021/cr078003i Google Scholar
  25. 25.
    Osseo-Asare K (1991) Aggregation, reversed micelles, and microemulsions in liquid-liquid extraction: the tri-n-butyl phosphatediluent-water-electrolyte system. Adv Colloid Interf Sci 37:123–173Google Scholar
  26. 26.
    Gaonkar AG, Neuman RD (1987) Interfacial activity, extractant selectivity, and reversed micellization in hydrometallurgical liquid/liquid extraction systems. J Colloid Interface Sci 119:251–261Google Scholar
  27. 27.
    Gaon H, Garver TM, Neumann RD (1988) H-NMR spectroscopic investigation of reversed micellization in Metat/organophosphorous surfactant system. Colloids Surf 30:266–273Google Scholar
  28. 28.
    Nave S, Mandin C, Martinet L et al (2004) Supramolecular organisation of tri-n-butyl phosphate in organic diluent on approaching third phase transition. Phys Chem Chem Phys 6:799. doi:10.1039/b311702b Google Scholar
  29. 29.
    Berthon L, Testard F, Martinet L et al (2010) Influence of the extracted solute on the aggregation of malonamide extractant in organic phases: consequences for phase stability. Compt Rendus Chimie 13:1326–1334. doi:10.1016/j.crci.2010.03.024 Google Scholar
  30. 30.
    Guilbaud P, Zemb T (2012) Solute-induced microstructural transition from weak aggregates towards a curved film of surface-active extractants. Chem Phys Chem 13:687–691. doi:10.1002/cphc.201100721 Google Scholar
  31. 31.
    Ellis RJ, Meridiano Y, Muller J et al (2014) Complexation-induced supramolecular assembly drives metal-ion extraction. Chemistry 20:12685. doi:10.1002/chem.201404746 Google Scholar
  32. 32.
    Zorz N, Antonio MR, Demars T, Zemb T (2014) Complexation-Induced Supramolecular Assembly Drives Metal-Ion Extraction - Ellis - 2014 - Chemistry - A European Journal - Wiley Online Library. … -A European JournalGoogle Scholar
  33. 33.
    Neuman RD, Zhou N-F, Wu J et al (1990) General model for aggregation of metal-extractant complexes in acidic organophosphorus solvent extraction systems. Sep Sci Technol 25:1655–1674. doi:10.1080/01496399008050415 Google Scholar
  34. 34.
    Wilson AM, Bailey PJ, Tasker PA et al (2013) Solvent extraction: the coordination chemistry behind extractive metallurgy. Chem Soc Rev 43:123. doi:10.1039/c3cs60275c Google Scholar
  35. 35.
    Erlinger C, Belloni L, Zemb T, Madic C (1999) Attractive interactions between reverse aggregates and phase separation in concentrated malonamide extractant solutions. Langmuir ACS J Surf Colloids 15:2290–2300. doi:10.1021/la980313w Google Scholar
  36. 36.
    Leontidis E (2002) Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr Opin Colloid Interface Sci 7:81–91Google Scholar
  37. 37.
    Vlachy N, Jagoda-Cwiklik B, Vácha R et al (2009) Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv Colloid Interf Sci 146:42–47Google Scholar
  38. 38.
    French RH, Parsegian VA, Podgornik R et al (2010) Long range interactions in nanoscale science. Rev Mod Phys 82:1887–1944. doi:10.1103/RevModPhys.82.1887 Google Scholar
  39. 39.
    Marcelja S (1997) Hydration in electrical double layers. Nature 385:689–690Google Scholar
  40. 40.
    Parsegian VA, Zemb T (2011) Hydration forces: observations, explanations, expectations, questions. Curr Opin Colloid Interface Sci 16:618–624. doi:10.1016/j.cocis.2011.06.010 Google Scholar
  41. 41.
    Testard F, Berthon L, Zemb T (2007) Liquid–liquid extraction: an adsorption isotherm at divided interface? Compt Rendus ChimieGoogle Scholar
  42. 42.
    Pileni M-P, Zemb T, Petit C (1985) Solubilization by reverse micelles: solute localization and structure perturbation. Chem Phys Lett 118:414–420. doi:10.1016/0009-2614(85)85402-6 Google Scholar
  43. 43.
    Faure A, Tistchenko AM, Zemb T, Chachaty CC (1985) Aggregation and dynamical behavior in sodium diethylhexyl phosphate/water/benzene inverted micelles. J Phys Chem 89:3373–3378. doi:10.1021/j100261a043 Google Scholar
  44. 44.
    Abécassis B, Testard F, Zemb T et al (2003) Effect of n-Octanol on the structure at the supramolecular scale of concentrated dimethyldioctylhexylethoxymalonamide extractant solutions. Langmuir ACS J Surf Colloids 19:6638–6644. doi:10.1021/la034088g Google Scholar
  45. 45.
    Testard F, Zemb T (1999) Excess of solubilization and curvature in nonionic microemulsions. J Colloid Interface Sci 219:11–19. doi:10.1006/jcis.1999.6466 Google Scholar
  46. 46.
    Tchakalova V, Testard F, Wong K et al (2008) Solubilization and interfacial curvature in microemulsions. Colloids Surf A Physicochem Eng Asp 331:31–39. doi:10.1016/j.colsurfa.2008.07.061 Google Scholar
  47. 47.
    Tchakalova V, Testard F, Wong K, et al. (2008) Solubilization and interfacial curvature in microemulsions: II. Surfactant efficiency and PIT. Colloids Surf A: … 331:40–47. doi: 10.1016/j.colsurfa.2008.07.060
  48. 48.
    Jiang J, Li W, Gao H, Wu J (2003) Extraction of inorganic acids with neutral phosphorus extractants based on a reverse micelle/microemulsion mechanism. J Colloid Interface Sci 268:208–214. doi:10.1016/j.jcis.2003.08.045 Google Scholar
  49. 49.
    Jensen MP, Yaita T, Chiarizia R (2007) Reverse-Micelle Formation in the Partitioning of Trivalent f-Element Cations by Biphasic Systems Containing a Tetraalkyldiglycolamide. Langmuir ACS J Surf Colloids 23:4765–4774. doi:10.1021/la0631926 Google Scholar
  50. 50.
    Chiarizia R, Briand A (2007) Third phase formation in the extraction of inorganic acids by TBP in n‐octane. Solvent Extraction Ion ExchGoogle Scholar
  51. 51.
    Chiarizia R, Briand A, Jensen MP, Thiyagarajan P (2008) Sans Study of Reverse Micelles Formed upon the Extraction of Inorganic Acids by TBP in n‐Octane. Solvent Extraction Ion Exch 26:333–359. doi:10.1080/07366290802182394 Google Scholar
  52. 52.
    Leontidis E, Christoforou M, Georgiou C, Delclos T (2014) Reverse aggregate nucleation induced by acids in liquid–liquid extraction processes. Curr Opin Colloid Interface Sci 19:2–8. doi:10.1016/j.cocis.2014.02.003 Google Scholar
  53. 53.
    Berthon L, Martinet L, Testard F et al (2007) Solvent penetration and sterical stabilization of reverse aggregates based on the DIAMEX process extracting molecules: consequences for the third phase formation. Solvent Extraction Ion Exch 25:545–576. doi:10.1080/07366290701512576 Google Scholar
  54. 54.
    Banc A, Bauduin P, Desbat B et al (2011) Ion extraction mechanism studied in a lyotropic lamellar phase. J Phys Chem B 115:1376–1384. doi:10.1021/jp108585f Google Scholar
  55. 55.
    Raiteri P, Demichelis R, Gale JD et al (2012) Exploring the influence of organic species on pre- and post-nucleation calcium carbonate. Faraday Discuss 159:61–85. doi:10.1039/C2FD20052J Google Scholar
  56. 56.
    Ninham BW, Barnes IS, Hyde ST et al (2007) Random connected cylinders: a new structure in three-component microemulsions. Europhys Lett 4:561–568. doi:10.1209/0295-5075/4/5/009 Google Scholar
  57. 57.
    Barnes IS, Hyde ST, Ninham BW et al (1988) Small-Angle X-Ray-Scattering From Ternary Microemulsions Determines Microstructure. J Phys Chem 92:2286–2293Google Scholar
  58. 58.
    Petit C, Zemb T, Pileni MP (1991) Gelation of reverse micelles. In: The living cell in four dimensions. AIP, pp 509–517Google Scholar
  59. 59.
    Zemb T (1991) Lamellae, cylinders or droplets: three types of connected networks. In: The living cell in four dimensions. AIP, pp 433–454Google Scholar
  60. 60.
    Hsu MF, Dufresne ER, Weitz DA (2005) Charge Stabilization in Nonpolar Solvents. Langmuir ACS J Surf Colloids 21:4881–4887. doi:10.1021/la046751m Google Scholar
  61. 61.
    Beunis F, Strubbe F, Karvar M et al (2013) Inverse micelles as charge carriers in nonpolar liquids: characterization with current measurements. Curr Opin Colloid Interface Sci 18:129–136. doi:10.1016/j.cocis.2013.02.010 Google Scholar
  62. 62.
    Martin-Gassin G, Gassin PM, Couston L (2012) Monoamide and Diamide Nitric Acid Extraction at the Water/Dodecane Monitored by Second Harmonic Generation. Colloids SurfGoogle Scholar
  63. 63.
    Gassin PM, Martin-Gassin G, Benichou E (2013) Tracking Molecular Aggregates at a Liquid Interface by Nonlinear Correlation Spectroscopy - The Journal of Physical Chemistry C (ACS Publications). J…Google Scholar
  64. 64.
    Gassin P-M, Champory R, Martin-Gassin G et al (2013) Surfactant transfer across a water/oil interface: a diffusion/kinetics model for the interfacial tension evolution. Colloids Surf A Physicochem Eng Asp 436:1103–1110. doi:10.1016/j.colsurfa.2013.08.053 Google Scholar
  65. 65.
    Gassin PM, Martin-Gassin G (2014) Second harmonic generation at liquid interface: molecular organization, supramolecular assemblies, and chirality. SPIE …Google Scholar
  66. 66.
    Gassin P-M, Martin-Gassin G, Benichou E, Brevet P-F (2014) Tracking Molecular Aggregates at a Liquid Interface by Nonlinear Correlation Spectroscopy. J Phys Chem C 118:1135–1141. doi:10.1021/jp411373v Google Scholar
  67. 67.
    Mitchell DJ, Ninham BW (1981) Micelles, vesicles and microemulsions. J Chem Soc. Faraday Trans 2(77):601–629. doi:10.1039/f29817700601 Google Scholar
  68. 68.
    Evans DF, Ninham BW (1986) Molecular forces in the self-organization of amphiphiles. J Phys Chem 90:226–234. doi:10.1021/j100274a005 Google Scholar
  69. 69.
    Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568. doi:10.1039/f29767201525 Google Scholar
  70. 70.
    Kunz W, Testard F, Zemb T (2009) Correspondence between curvature, packing parameter, and hydrophilic-lipophilic deviation scales around the phase-inversion temperature. Langmuir ACS J Surf Colloids 25:112–115. doi:10.1021/la8028879 Google Scholar
  71. 71.
    Dufrêche J-F, Zemb TN (2014) Effect of long-range interactions on ion equilibria in liquid-liquid extraction. (accepted)Google Scholar
  72. 72.
    Johans C, Behrens MA, Bergquist KE, Olsson U (2013) Potential determining salts in microemulsions: interfacial distribution and effect on the phase behavior. Langmuir ACS J Surf Colloids 29:15378–15746Google Scholar
  73. 73.
    Zhu ZW, He JY, Zhang ZF et al (2004) Uranium/plutonium and uranium/neptunium separation by the Purex process using hydroxyurea. J Radioanal Nucl Chem 262:707–711Google Scholar
  74. 74.
    Ellis RJ, Antonio MR (2012) Coordination structures and supramolecular architectures in a cerium (III)–malonamide solvent extraction system. Langmuir ACS J Surf Colloids 28:5987–5998Google Scholar
  75. 75.
    Ellis RJ, Antonio MR (2012) Redox Chemistry of Third Phases Formed in the Cerium/Nitric Acid/Malonamide‐n‐Dodecane Solvent Extraction System. Chem Plus Chem 77:41–47Google Scholar
  76. 76.
    Gao S, Shen X, Chen Q, Gao H (2012) Solvent extraction of thorium(IV) using W/O microemulsion. Sci China Chem 55:1712–1718. doi:10.1007/s11426-012-4686-7 Google Scholar
  77. 77.
    Luan Y, Xu G, Yuan S et al (2002) Comparative studies of structurally similar surfactants: sodium bis (2-ethylhexyl) phosphate and sodium bis (2-ethylhexyl) sulfosuccinate. Langmuir ACS J Surf Colloids 18:8700–8705Google Scholar
  78. 78.
    Marcelja S, Radić N (1976) Repulsion of interfaces due to boundary water. Chem Phys Lett 42:129–130. doi:10.1016/0009-2614(76)80567-2 Google Scholar
  79. 79.
    Zemb T, Parsegian VA (2011) Editorial overview: hydration forces. Curr Opin Colloid Interface Sci 16:515–516Google Scholar
  80. 80.
    Zemb T, Diat O (2010) What can we learn from combined SAXS and SANS measurements of the same sample containing surfactants? J Phys Conf Ser 247:012002. doi:10.1088/1742-6596/247/1/012002 Google Scholar
  81. 81.
    Déjugnat C, Dourdain S, Dubois V et al (2014) Reverse aggregate nucleation induced by acids in liquid-liquid extraction processes. Phys Chem Chem Phys 16:7339–7349. doi:10.1039/c4cp00073k Google Scholar
  82. 82.
    Kotlarchyk M, Chen SH (1983) Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J Chem Phys 79:2461–2469. doi:10.1063/1.446055 Google Scholar
  83. 83.
    Hansen J-P, Hayter JB (1982) A rescaled MSA structure factor for dilute charged colloidal dispersions. Mol Phys 46:651–656. doi:10.1080/00268978200101471 Google Scholar
  84. 84.
    Baxter RJ (1968) Ornstein - Zernike Relation for a Disordered Fluid. Aust J Phys 21:563–570. doi:10.1071/PH680563 Google Scholar
  85. 85.
    Baxter RJ (1970) Ornstein–Zernike Relation and Percus–Yevick Approximation for Fluid Mixtures. J Chem Phys 52:4559–4562. doi:10.1063/1.1673684 Google Scholar
  86. 86.
    Hilfliker R, Eicke HF, Sager W et al (1990) Form and Structure Factors of Water Aot Oil Microemulsions From Synchrotron SAXS. Ber Bunsen-Gesellschaft-Phys Chem Chem Phys 94:677–683Google Scholar
  87. 87.
    Barnes IS, Zemb TN (1988) Calculation of small-angle scattering from models for surfactant systems. J Appl Crystallogr 21:373–379. doi:10.1107/S0021889888002651 Google Scholar
  88. 88.
    Zemb TN, Hyde ST, Derian PJ et al (1987) Microstructure From X-Ray-Scattering - the Disordered Open Connected Model of Microemulsions. J Phys Chem 91:3814–3820Google Scholar
  89. 89.
    Zemb TN (2003) The DOC model of microemulsions: microstructure, scattering, conductivity and phase limits imposed by sterical constraints. Colloids Surf A: … 129–130:435–454Google Scholar
  90. 90.
    Duvail M, Dufrêche J-F, Arleth L, Zemb T (2013) Mesoscopic modelling of frustration in microemulsions. Phys Chem Chem Phys 15:7133–7141. doi:10.1039/c3cp43981j Google Scholar
  91. 91.
    Duvail M, Arleth L, Zemb T, Dufrêche J-F (2014) Predicting for thermodynamic instabilities in water/oil/surfactant microemulsions: a mesoscopic modelling approach. J Chem Phys 140:164711. doi:10.1063/1.4873357 Google Scholar
  92. 92.
    Zemb TN, Barnes IS, Derian PJ, Ninham BW (1990) Scattering as a critical test of microemulsion structural models. Program Colloid Polym Sci 81:20–29Google Scholar
  93. 93.
    Welberry TR, Zemb TN (1988) Scattering of Two-Dimensional Models of Microemulsions. J Colloid Interface Sci 123:413–426Google Scholar
  94. 94.
    Chiarizia R, Nash KL, Jensen MP et al (2003) Application of the Baxter model for hard spheres with surface adhesion to SANS data for the U(VI)-HNO3, TBP-n-dodecane system. Langmuir ACS J Surf Colloids 19:9592–9599. doi:10.1021/la030152i Google Scholar
  95. 95.
    Chiarizia R, Jensen MP, Rickert PG et al (2004) Extraction of zirconium nitrate by TBP in n-octane: influence of cation type on third phase formation according to the “sticky spheres” model. Langmuir ACS J Surf Colloids 20:10798–10808. doi:10.1021/la0488957 Google Scholar
  96. 96.
    Cabane B, Duplessix R, Zemb T (1985) High resolution neutron scattering on ionic surfactant micelles: sds in water. J Phys France 46:2161–2178. doi:10.1051/jphys:0198500460120216100 Google Scholar
  97. 97.
    Ellis RJ, Anderson TL, Antonio MR et al (2013) A SAXS Study of Aggregation in the Synergistic TBP–HDBP Solvent Extraction System. J Phys Chem B 117:5916–5924. doi:10.1021/jp401025e Google Scholar
  98. 98.
    Baxter RJ (1968) Percus–Yevick Equation for Hard Spheres with Surface Adhesion. J Chem Phys 49:2770–2774. doi:10.1063/1.1670482 Google Scholar
  99. 99.
    Nave S, Modolo G, Madic C, Testard F (2004) Aggregation Properties of N, N, N′, N′‐Tetraoctyl‐3‐oxapentanediamide (TODGA) in n‐Dodecane. Solvent Extraction Ion Exch 22:527–551. doi:10.1081/SEI-120039721 Google Scholar
  100. 100.
    Bauduin P, Testard F, Berthon L, Zemb T (2007) Relation between the hydrophile/hydrophobe ratio of malonamide extractants and the stability of the organic phase: investigation at high extractant concentrations. Phys Chem Chem Phys 9:3776–3785. doi:10.1039/b701479a Google Scholar
  101. 101.
    MARCUS Y, Kolařík Z (1973) Thermodynamics of Liquid-Liquid Distribution Reactions.1. Dioxouranium(Vi) Nitrate-Water-Tri-N-Butyl Phosphate-N-Dodecane System. J Chem Eng Data 18:155–163Google Scholar
  102. 102.
    Marcus Y, Kolařík Z (1977) The enthalpies of mixing of organophosphate esters with hydrocarbons - Springer. J Solut ChemGoogle Scholar
  103. 103.
    Marcus Y, Kolařík Z (1976) Thermodynamics of liquid-liquid distribution reactions—III The U(VI), Nd(III) or Ho(III) nitrate-water-di(2-ethylhexyl) phosphoric acid-hydrocarbon diluent extraction system. J Inorg Nucl ChemGoogle Scholar
  104. 104.
    Bauer C, Bauduin P, Dufreche JF et al (2012) Liquid/liquid metal extraction: phase diagram topology resulting from molecular interactions between extractant, ion, oil and water. Eur Phys J Spec Top 213:225–241. doi:10.1140/epjst/e2012-01673-4 Google Scholar
  105. 105.
    Pieruschka P, Marelja S (1992) Statistical mechanics of random bicontinuous phases. J Phys II France 2:235–247. doi:10.1051/jp2:1992127 Google Scholar
  106. 106.
    Pieruschka P, Marcelja S (1994) Monte Carlo Simulation of Curvature-Elastic Interfaces. Langmuir ACS J Surf Colloids 10:345–350. doi:10.1021/la00014a001 Google Scholar
  107. 107.
    Arleth L, Marčelja S, Zemb T (2001) Gaussian random fields with two level-cuts—Model for asymmetric microemulsions with nonzero spontaneous curvature? J Chem Phys 115:3923–3936. doi:10.1063/1.1388558 Google Scholar
  108. 108.
    Bauer C, Bauduin P, Diat O, Zemb T (2010) Ion Extractant as Cosurfactant at the Water–oil Interface in Microemulsions. TSD 47:307–311Google Scholar
  109. 109.
    Tanford C (1980) The hydrophobic effect. John Wiley & SonsGoogle Scholar
  110. 110.
    Déjugnat C, Dourdain S, Dubois V et al (2013) Reverse aggregates nucleation induced by acids in liquid-liquid extraction processes. SubmittedGoogle Scholar
  111. 111.
    Bardez E, Vy NC, Zemb T (1995) Counterion-Driven Sphere to Cylinder Transition in Reverse Micelles - a Small-Angle X-Ray-Scattering and Conductometric Study. Langmuir ACS J Surf Colloids 11:3374–3381Google Scholar
  112. 112.
    Chen SH, Chang SL, Strey R (1990) Structural evolution within the one-phase region of a three-component microemulsion system: water–n-decane–sodium-bis-ethylhexylsulfosuccinate (AOT). J Chem Phys 93:1907–1918. doi:10.1063/1.459068 Google Scholar
  113. 113.
    Chen SH, Chang SL, Strey R (1991) Simulation of bicontinuous microemulsions: comparison of simulated real-space microstructures with scattering experiments. J Appl Crystallogr 24:721–731. doi:10.1107/S0021889891001462 Google Scholar
  114. 114.
    Chen SH, Chang SL, Strey R et al (1991) Structural Evolution of Bicontinuous Microemulsions. J Phys Chem 95:7427–7432Google Scholar
  115. 115.
    Chen SH, Chang SL, Strey R, Thiyagarajan P (1992) Structural Inversion Processes in Three-Component Ionic Microemulsion Studied by Small Angle Neutron Scattering. Struct … 281–286. doi:10.1007/978-3-642-84763-9_54
  116. 116.
    Testard F, Zemb T (2000) Solute effect on connectivity of water-in-oil microemulsions. Langmuir : the ACS journal of surfaces and colloidsGoogle Scholar
  117. 117.
    Hyde SH, Anderson S, Larsson K et al (1996) The Language of Shape. Elsevier Inc.Google Scholar
  118. 118.
    Chen SH, Chang SL, Strey R (1990) On the interpretation of scattering peaks from bicontinuous microemulsions. Trends Colloid Interf Sci IV:30–35. doi:10.1007/BFb0115519 Google Scholar
  119. 119.
    Winsor PA (1948) Hydrotropy, solubilisation and related emulsification processes. Trans Faraday Soc 44:376–398. doi:10.1039/tf9484400376 Google Scholar
  120. 120.
    Nilsson M, Nash KL (2007) Review article: a review of the development and operational characteristics of the TALSPEAK process. Solvent Extraction Ion Exch 25:665–701. doi:10.1080/07366290701634636 Google Scholar
  121. 121.
    Reynolds PA, Gilbert EP, Henderson MJ, White JW (2009) Structure of High Internal Phase Aqueous-in-Oil Emulsions and Related Inverse Micelle Solutions. 3. Variation of Surfactant. J Phys Chem B 113:12231–12242. doi:10.1021/jp903484j Google Scholar
  122. 122.
    Bauer C, Bauduin P, Diat O, Zemb T Study of extractant molecules as cosurfactant at the water–oil interface in microemulsions. icsm.frGoogle Scholar
  123. 123.
    Bauer C, Bauduin P, Diat O, Zemb T (2011) Liquid interface functionalized by an ion extractant: the case of Winsor III microemulsions. Langmuir ACS J Surf Colloids 27:1653–1661. doi:10.1021/la104005x Google Scholar
  124. 124.
    Adamson AW, Gast AP (1997) Physical Chemistry of Surfaces. Wiley-InterscienceGoogle Scholar
  125. 125.
    Dill KA, Bromberg S (2003) Molecular Driving Forces. Garland SciGoogle Scholar
  126. 126.
    Zemb T, Duvail M, Dufrêche J-F (2013) Reverse Aggregates as Adaptive Self-Assembled Systems for Selective Liquid-Liquid Cation Extraction. Israel J Chem 53:108–112. doi:10.1002/ijch.201200091 Google Scholar
  127. 127.
    Poriel L, Favre Réguillon A, Pellet-Rostaing S, Lemaire M (2006) Zirconium and Hafnium Separation, Part 1. Liquid/Liquid Extraction in Hydrochloric Acid Aqueous Solution with Aliquat 336. Sep Sci Technol 41:1927–1940. doi:10.1080/01496390600725802 Google Scholar
  128. 128.
    Taghizadeh M, Ghasemzadeh R, Ashrafizadeh SN et al (2008) Determination of optimum process conditions for the extraction and separation of zirconium and hafnium by solvent extraction. Hydrometallurgy 90:115–120. doi:10.1016/j.hydromet.2007.10.002 Google Scholar
  129. 129.
    Dourdain S, Hofmeister I, Pecheur O et al (2012) Synergism by Coassembly at the Origin of Ion Selectivity in Liquid–Liquid Extraction. Langmuir ACS J Surf Colloids 28:11319–11328. doi:10.1021/la301733r Google Scholar
  130. 130.
    Eicke HF, SHEPHERD JC (1974) Dielectric Properties of Apolar Micelle Solutions Containing Solubilized Water. Helv Chim Acta 57:1951–1963Google Scholar
  131. 131.
    Borkovec M, Eicke HF, Hammerich H (1988) Two percolation processes in microemulsions. J Phys Chem 92:206–211Google Scholar
  132. 132.
    Evans DF, Mitchell DJ, Ninham BW (1986) Oil, water, and surfactant: properties and conjectured structure of simple microemulsions. J Phys Chem 90:2817–2825Google Scholar
  133. 133.
    Eicke HF, Christen H (1978) Is water critical to the formation of micelles in apolar media? Helv Chim Acta 61:2258–2263. doi:10.1002/hlca.19780610631 Google Scholar
  134. 134.
    Okur HI, Kherb J, Cremer PS (2013) Cations Bind Only Weakly to Amides in Aqueous Solutions. J Am Chem Soc 135:5062–5067Google Scholar
  135. 135.
    Larpent C, Laplace A, Zemb T (2004) Macrocyclic sugar-based surfactants: block molecules combining self-aggregation and complexation properties. Angew Chem Int Ed Engl 43:3163–3167. doi:10.1002/anie.200353484 Google Scholar
  136. 136.
    Larpent C, Prevost S, Berthon L et al (2007) Nonionic metal-chelating surfactants mediated solvent-free thermo-induced separation of uranyl. New J Chem 31:1424–1428. doi:10.1039/b707016k Google Scholar
  137. 137.
    Okamoto R, Onuki A (2010) Precipitation in aqueous mixtures with addition of a strongly hydrophilic or hydrophobic solute. Phys Rev E 82:051501. doi:10.1103/PhysRevE.82.051501 Google Scholar
  138. 138.
    Okamoto R, Onuki A (2011) Charged colloids in an aqueous mixture with a salt. Phys Rev E 84:051401. doi:10.1103/PhysRevE.84.051401 Google Scholar
  139. 139.
    Onuki A, Okamoto R (2011) Selective solvation effects in phase separation in aqueous mixtures. Curr Opin Colloid Interface Sci 16:525–533Google Scholar
  140. 140.
    Aroti A, Leontidis E, Dubois M, et al. (2007) Monolayers, bilayers and micelles of zwitterionic lipids as model systems for the study of specific anion effects. Colloids Surf A: … 303:144–158. doi:10.1016/j.colsurfa.2007.03.011
  141. 141.
    Grimes TS, Jensen MP, Debeer-Schmidt L et al (2012) Small-Angle Neutron Scattering Study of Organic-Phase Aggregation in the TALSPEAK Process. J Phys Chem B 116:13722–13730. doi:10.1021/jp306451d Google Scholar
  142. 142.
    Marcus J, Klossek ML, Touraud D, Kunz W (2013) Nano-droplet formation in fragrance tinctures. Flavour Fragr J 28:294–299. doi:10.1002/ffj.3172 Google Scholar
  143. 143.
    Klossek ML, Touraud D, Kunz W (2013) Eco-solvents – cluster-formation, surfactantless microemulsions and facilitated hydrotropy. Phys Chem Chem Phys 15:10971–10977. doi:10.1039/c3cp50636c Google Scholar
  144. 144.
    Lopian T (2014) Master of Science – Chemistry. University of Regensburg 1–39Google Scholar
  145. 145.
    Gebauer D, Völkel A, Cölfen H (2008) Stable Prenucleation Calcium Carbonate Clusters. Science 322:1819–1822. doi:10.1126/science.1164271 Google Scholar
  146. 146.
    Demichelis R, Raiteri P, Gale JD et al (2011) Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commun 2:590. doi:10.1038/ncomms1604 Google Scholar
  147. 147.
    Kellermeier M, Picker A, Kempter A et al (2014) A straightforward treatment of activity in aqueous CaCO3 solutions and the consequences for nucleation theory. Adv Mater Weinheim 26:752–757. doi:10.1002/adma.201303643 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Zemb
    • 1
  • Caroline Bauer
    • 1
  • Pierre Bauduin
    • 1
  • Luc Belloni
    • 2
  • Christophe Déjugnat
    • 1
  • Olivier Diat
    • 1
  • Véronique Dubois
    • 1
  • Jean-François Dufrêche
    • 1
  • Sandrine Dourdain
    • 1
  • Magali Duvail
    • 1
  • Chantal Larpent
    • 3
  • Fabienne Testard
    • 2
  • Stéphane Pellet-Rostaing
    • 1
  1. 1.Institut de Chimie Séparative de Marcoule (ICSM) UMR5257 CEA/CNRS/UM2/ENSCM, Site de MarcouleBagnols-sur-CèzeFrance
  2. 2.SIS2M, IRAMIS, CEA SaclayGif-sur-YvetteFrance
  3. 3.Institut Lavoisier de Versailles, UMR CNRS 8180Université de Versailles St Quentin-en-YvelinesVersaillesFrance

Personalised recommendations