Stability of polyelectrolyte multilayers in oxidizing media: a critical issue for the development of multilayer based membranes for nanofiltration

Abstract

Polyelectrolyte multilayers (PEMs) for nanofiltration and reverse osmosis are fabricated by means of the Layer by Layer technique from the negatively charged poly(sodium 4-styrenesulfonate) (PSS) and polycations with primary, secondary, tertiary, and quaternary amines. PEMs stability is studied after treatment with the oxidizing agent sodium hypochlorite (NaOCl), in the same conditions as in membrane modulus cleaning. PEM assembly and mass changes after treatment with NaOCl are studied with the Quartz Crystal Microbalance. The chemical composition of the PEMs after the treatment with NaOCl is studied by X-ray photoelectron spectroscopy. The oxidation of polycations in bulk is studied by UV–vis. The PEMs fabricated with poly(diallydimethylammonium chloride) (PDADMAC) and poly(vinylbenzyltrimethylammonium chloride) (PVBTMAC), bearing quaternary amines, show the highest chemical stability and smallest mass variations after oxidation. PEMs including other polycations bearing quaternary amines and polycations with primary, secondary, and tertiary amines are either fully removed or significantly changed chemically.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Decher G (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277(5330):1232–1237. doi:10.1126/science.277.5330.1232

    CAS  Article  Google Scholar 

  2. 2.

    Geise GM, Lee HS, Miller DJ, Freeman BD, McGrath JE, Paul DR (2010) Water purification by membranes: the role of polymer science. J Polym Sci B 48(15):1685–1718. doi:10.1002/polb.22037

    CAS  Article  Google Scholar 

  3. 3.

    Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: Insights from theory and experiment. J Am Chem Soc 132(24):8338–8348. doi:10.1021/ja101014y

    CAS  Article  Google Scholar 

  4. 4.

    Stanton BW, Harris JJ, Miller MD, Bruening ML (2003) Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. Langmuir 19(17):7038–7042. doi:10.1021/la034603a

    CAS  Article  Google Scholar 

  5. 5.

    Jin W, Toutianoush A, Tieke B (2003) Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes. Langmuir 19(7):2550–2553. doi:10.1021/la020926f

    CAS  Article  Google Scholar 

  6. 6.

    Shan W, Bacchin P, Aimar P, Bruening ML, Tarabara VV (2010) Polyelectrolyte multilayer films as backflushable nanofiltration membranes with tunable hydrophilicity and surface charge. J Membr Sci 349(1–2):268–278. doi:10.1016/j.memsci.2009.11.059

    CAS  Article  Google Scholar 

  7. 7.

    Miller MD, Bruening ML (2004) Controlling the nanofiltration properties of multilayer polyelectrolyte membranes through variation of film composition. Langmuir 20(26):11545–11551. doi:10.1021/la0479859

    CAS  Article  Google Scholar 

  8. 8.

    Ouyang L, Malaisamy R, Bruening ML (2008) Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. J Membr Sci 310(1–2):76–84. doi:10.1016/j.memsci.2007.10.031

    CAS  Article  Google Scholar 

  9. 9.

    Tripathi BP, Dubey NC, Stamm M (2013) Functional polyelectrolyte multilayer membranes for water purification applications. J Hazard Mater 252–253:401–412. doi:10.1016/j.jhazmat.2013.02.052

    Article  Google Scholar 

  10. 10.

    Arys X, Laschewsky A, Jonas AM (2001) Ordered polyelectrolyte “Multilayers”. 1. Mechanisms of growth and structure formation: a comparison with classical fuzzy “Multilayers”. Macromolecules 34(10):3318–3330. doi:10.1021/ma010092s

    CAS  Article  Google Scholar 

  11. 11.

    Iturri Ramos JJ, Stahl S, Richter RP, Moya SE (2010) Water content and buildup of Poly(diallyldimethylammonium chloride)/Poly(sodium 4-styrenesulfonate) and Poly(allylamine hydrochloride)/Poly(sodium 4-styrenesulfonate) polyelectrolyte multilayers studied by an in situ combination of a quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry. Macromolecules 43(21):9063–9070. doi:10.1021/ma1015984

    CAS  Article  Google Scholar 

  12. 12.

    Deng H-Y, Xu Y-Y, Zhu B-K, Wei X-Z, Liu F, Cui Z-Y (2008) Polyelectrolyte membranes prepared by dynamic self-assembly of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). J Membr Sci 323(1):125–133. doi:10.1016/j.memsci.2008.06.028

    CAS  Article  Google Scholar 

  13. 13.

    Cheng C, Yaroshchuk A, Bruening ML (2013) Fundamentals of selective ion transport through multilayer polyelectrolyte membranes. Langmuir 29(6):1885–1892. doi:10.1021/la304574e

    CAS  Article  Google Scholar 

  14. 14.

    Armstrong JA, Bernal EEL, Yaroshchuk A, Bruening ML (2013) Separation of ions using polyelectrolyte-modified nanoporous track-etched membranes. Langmuir 29(32):10287–10296. doi:10.1021/la401934v

    CAS  Article  Google Scholar 

  15. 15.

    Bruening ML (2002) Controlling the ion-permeability of layered polyelectrolyte films and membranes. In: Decher G, Schlenoff JB (eds) Multilayer thin films: Sequential assembly of nanocomposite materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 907–924

    Google Scholar 

  16. 16.

    Moya S, Dähne L, Voigt A, Leporatti S, Donath E, Möhwald H (2001) Polyelectrolyte multilayer capsules templated on biological cells: Core oxidation influences layer chemistry. Colloids Surf A Physicochem Eng Asp 183–185:27–40. doi:10.1016/S0927-7757(01)00537-4

    Article  Google Scholar 

  17. 17.

    Donath E, Moya S, Neu B, Sukhorukov GB, Georgieva R, Voigt A, Bäumler H, Kiesewetter H, Möhwald H (2002) Hollow polymer shells from biological templates: Fabrication and potential applications. Chem Eur J 8(23):5481–5485. doi:10.1002/1521-3765(20021202)8:23<5481::AID-CHEM5481>3.0.CO;2-8

    CAS  Article  Google Scholar 

  18. 18.

    Olszyna M, Dahne L Unpublished results

  19. 19.

    Lavalle P, Gergely C, Cuisinier FJG, Decher G, Schaaf P, Voegel JC, Picart C (2002) Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime: an in situ atomic force microscopy study. Macromolecules 35(11):4458–4465. doi:10.1021/ma0119833

    CAS  Article  Google Scholar 

  20. 20.

    Patricio S, Cruz AI, Biernacki K, Ventura J, Eaton P, Magalhaes AL, Moura C, Hillman AR, Freire C (2010) Novel layer-by-layer interfacial [Ni(salen)]-polyelectrolyte hybrid films. Langmuir 26(13):10842–10853. doi:10.1021/la1006956

    CAS  Article  Google Scholar 

  21. 21.

    Moulder JF, Stickle WF, Sobol PE, Bomben K (1992) Handbook of x-ray photoelectron spectroscop 2nd ed. 2nd edn. Physical electronics USA, Inc

  22. 22.

    Beamson G, Briggs D (1992) In: high resolution XPS of organic polymers—the scienta ESCA300 database. Wiley, Chichester

    Google Scholar 

  23. 23.

    Conger CP, Suzer S (2009) Response of polyelectrolyte layers to the SiO2 substrate charging as probed by XPS. Langmuir 25(3):1757–1760. doi:10.1021/la803305w

    CAS  Article  Google Scholar 

  24. 24.

    Fu G, Han W, Yao L, Lin J, Wei S, Chen Y, Tang Y, Zhou Y, Lu T, Xia X (2012) One-step synthesis and catalytic properties of porous palladium nanospheres. J Mater Chem 22(34):17604–17611. doi:10.1039/C2JM32381H

    CAS  Article  Google Scholar 

  25. 25.

    Yu Y, Zhang H, Cui S (2011) Fabrication of robust multilayer films by triggering the coupling reaction between phenol and primary amine groups with visible light irradiation. Nanoscale 3(9):3819–3824. doi:10.1039/C1NR10453E

    CAS  Article  Google Scholar 

  26. 26.

    Rosunee S, Carr CM, Hibbert S, Jones C (2003) Surface chemical analysis of tencel treated with a cationic fixing agent. J Mater Sci 38(10):2179–2185. doi:10.1023/A:1023780131382

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the FP7-NMP project LbLbrane (Grant agreement number: 281047) for financial support. The authors would also like to thank Dr. Richard Murray for critical revision of the article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergio Enrique Moya.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gregurec, D., Olszyna, M., Politakos, N. et al. Stability of polyelectrolyte multilayers in oxidizing media: a critical issue for the development of multilayer based membranes for nanofiltration. Colloid Polym Sci 293, 381–388 (2015). https://doi.org/10.1007/s00396-014-3423-5

Download citation

Keywords

  • Polyelectrolyte multilayer
  • Oxidation
  • QCM-D
  • XPS