pH-sensitive supramolecular copolydendrimers, new anticancer drug delivery system


In this work, new class of supramolecular copolydendrimers (SCDs) consisting of polyamidoamines (PAMAMs) and polyglycerol were synthesized through host-guest interactions. SCDs were able to encapsulate, transport, and release doxorubicin (DOX) efficiently. Host-guest interactions between PAMAM and polyglycerol was depended on pH so that aqueous solutions of SCDs and SCDs-based drug delivery systems were stable at room temperature and pH = 7.4, but their building blocks were separated in lower pHs(<pH = 5.5). This property was used for controlled release of DOX molecules from SCDs. Loading capacity of SCDs was depended on the generation of PAMAM and also number of attached polyglycerols on its periphery. According to spectroscopy and microscopy evaluations, size of SCDs and SCDs-based drug delivery systems was 114 and 129 nm, respectively. Due to their own fluorescence, drug delivery systems could be studied either by following encapsulated DOX molecules or SCDs.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Lehn JM (1995) Supramolecular chemistry: concepts and perspectives; VCH: Weinheim, Germany. Chapter 9:139–197

  2. 2.

    Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Supramolecular polymers. Chem Rev 101(12):4071–4097

    CAS  Article  Google Scholar 

  3. 3.

    Harada A (2006) Supramolecular polymers based on cyclodextrins. J Polym Sci A Polym Chem 44(17):5113–5119

    CAS  Article  Google Scholar 

  4. 4.

    Kim HJ, Kim T, Lee M (2011) Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. Acc Chem Res 44(1):72–82

    CAS  Article  Google Scholar 

  5. 5.

    Greef FADT, Smulders MMJ, Wolffs M, Schenning PHJA, Sijbesma PR, Meijer EW (2009) Supramolecular polymerization. Chem Rev 109(11):5687–5754

    Article  Google Scholar 

  6. 6.

    Takahashi H, Takashima Y, Yamaguchi H, Harada A (2006) Selection between pinching-type and supramolecular polymer-type complexes by α-cyclodextrin−β-cyclodextrin hetero-dimer and hetero-cinnamamide guest dimers. J Org Chem 71(13):4878–4883

    CAS  Article  Google Scholar 

  7. 7.

    Ohga K, Takashima Y, Takahashi H, Kawaguchi Y, Yamaguchi H, Harada A (2005) Preparation of supramolecular polymers from a cyclodextrin dimer and ditopic guest molecules: control of structure by linker flexibility. Macromolecules 38(14):5897–5904

    CAS  Article  Google Scholar 

  8. 8.

    Miyauchi M, Harada A (2004) Construction of supramolecular polymers with alternating a-, b-cyclodextrin units using conformational change induced by competitive guests. J Am Chem Soc 126(37):11418–11419

    CAS  Article  Google Scholar 

  9. 9.

    Miyawaki A, Takashima Y, Yamaguchi H, Harada A (2008) Branched supramolecular polymers formed by bifunctional cyclodextrin derivatives. Tetrahedron 64(36):8355–8361

    CAS  Article  Google Scholar 

  10. 10.

    Jabbari-Farouji S, Schoot PVD (2010) Competing templated and self-assembly in supramolecular polymers. Macromolecules 43(13):5833–5844

    CAS  Article  Google Scholar 

  11. 11.

    Baytekin HT, Baytekin B, Schulz A, Springer A, Gross T, Unger W, Artamonova M, Schlecht S, Lentz D, Schalley AC (2009) Metallo-supramolecular nano-spheres via hierarchical self-assembly. Chem Mater 21(13):2980–2992

    CAS  Article  Google Scholar 

  12. 12.

    Chen JY, Chen CY, Lee HM, Passaglia E, Vizza F, Oberhauser W (2011) Zinc coordination polymers with 2,6-bis(imidazole-1-yl)pyridine and benzene carboxylate: pseudo-supramolecular isomers with and without interpenetration and unprecedented trinodal topology. Cryst Growth Des 11(4):1230–1237

    Article  Google Scholar 

  13. 13.

    Sessler LJ, Jayawickramarajah J, Sathiosatham M, Sherman LC, Brodbelt S (2003) Novel guanosine-cytidine dinucleotide that self-assembles into a trimeric supramolecule. J Org Lett 5(15):2627–2630

    CAS  Article  Google Scholar 

  14. 14.

    Schmidt R, Stolte M, Grne M, Wrthner F (2011) Hydrogen-bond-directed formation of supramolecular polymers incorporating head-to-tail oriented dipolar merocyanine dyes. Macromolecules 44(10):3766–3776

    CAS  Article  Google Scholar 

  15. 15.

    Jazkewitsch O, Ritter H (2011) Formation and characterization of inclusion complexes of alkyne functionalized poly(epsilon-caprolactone) with beta-cyclodextrin. Pseudo-polyrotaxane-based supramolecular organogels. Macromolecules 44(2):375–382

    CAS  Article  Google Scholar 

  16. 16.

    Xing H, Zhou HT, Yu HQ, Gou ZM, Xiao JX (2011) Participation of the inclusion complexes in the surface adsorbed layer in the mixtures of α-cyclodextrin and cationic-anionic hydrogenated and fluorinated surfactants: a surface tension proof. J Chem Eng Data 56(4):1423–1432

    CAS  Article  Google Scholar 

  17. 17.

    Chen Y, Liu Y (2010) Cyclodextrin-based bioactive supramolecular assemblies. Chem Soc Rev 39(2):495–505

    CAS  Article  Google Scholar 

  18. 18.

    Mura P, Corti G, Maestrelli F, Cirri M (2007) The influence of chitosan on cyclodextrin complexing and solubilizing abilities towards drugs. J Incl Phenom Macrocycl Chem 59(3–4):307–313

    CAS  Article  Google Scholar 

  19. 19.

    Jazkewitsch O, Mondrzyk A, Staffel R, Ritter H (2011) Cyclodextrin‐modified polyesters from lactones and from bacteria: an approach to new drug carrier systems. Macromolecules 44(6):1365–1371

    CAS  Article  Google Scholar 

  20. 20.

    Chan SC, Kuo SW, Chang FC (2005) Synthesis of the organic/inorganic hybrid star polymers and their inclusion complexes with cyclodextrins. Macromolecules 38(8):3099–3107

    CAS  Article  Google Scholar 

  21. 21.

    Zarrabi A, Adeli M, Vossoughi M, Shokrgozar MA (2011) Design and synthesis of novel polyglycerol hybrid nanomaterials for potential applications in drug delivery systems. Macromol Biosci 11(3):383–390

    CAS  Article  Google Scholar 

  22. 22.

    Adeli M, Kalantari M, Zarnegar Z, Kabiri R (2012) Dendritic supramolecules; new multivalent nanocarriers. RSC Adv 2(7):2756–2758

    CAS  Article  Google Scholar 

  23. 23.

    Adeli M, Kalantari M, Sadeghi E, Mahmoudi M (2011) Synthesis of new hybrid nanomaterials: promising systems for cancer therapy. Nanomed: Nanotechnol, BiolMed 7(6):806–817

    CAS  Article  Google Scholar 

  24. 24.

    Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polymer 17(1):117–132

    CAS  Article  Google Scholar 

  25. 25.

    Lee ES, Kim D, Youn YS, Oh KT, Bae YH (2008) A novel virusmimetic nanogel vehicle. Angew Chem Int Ed 47(13):2418–2421

    CAS  Article  Google Scholar 

  26. 26.

    Quan CY, Chen JX, Wang HY, Li C, Chang C, Zhang XZ, Zhuo RX (2010) Core-shell nanosized assemblies mediated by the α-β cyclodextrin dimer with a tumor-triggered targeting property. ACSnano 4(7):4211–4219

    CAS  Google Scholar 

  27. 27.

    Xu S, Luo Y, Haag R (2007) Water-soluble pH- responsive dendritic core-shell nanocarriers for polar dyes based on poly(ethylene imine). Macromol Biosci 7:968–974

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohsen Adeli.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOC 6927 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chegeni, B.K., Kakanejadifard, A., Abedi, F. et al. pH-sensitive supramolecular copolydendrimers, new anticancer drug delivery system. Colloid Polym Sci 292, 3337–3346 (2014).

Download citation


  • Dendrimers
  • Supramolecular polymers NMR
  • Nanomedicine
  • Nanoparticles
  • Encapsulation