Advertisement

Colloid and Polymer Science

, Volume 293, Issue 1, pp 135–141 | Cite as

Natural rubber with nanomatrix of non-rubber components observed by focused ion beam-scanning electron microscopy

  • Kenichiro Kosugi
  • Seiichi KawaharaEmail author
Original Contribution

Abstract

Naturally occurring nanomatrix structure formed in natural rubber was observed with a field emission scanning electron microscope equipped with a focused ion beam (FIB-SEM), and it was related to viscoelastic properties of the rubber. Film specimen used for the FIB-SEM observation was prepared from serum fraction of natural rubber latex, in which serum rubber contained about 15 w/w% proteins. Morphology of the film specimen was observed by FIB-SEM, after pinning the nanomatrix structure with glutaraldehyde followed by staining the serum rubber with OsO4. Three-dimensional image of the nanomatrix structure was successfully reconstructed in mesoscale without defects and voids, in which rubber particles of 200 nm in diameter were dispersed in the matrix of non-rubber components such as the proteins and phospholipids of several 10 nm in thickness. Storage modulus at plateau region of the serum rubber was about 500 times as high as that of deproteinized natural rubber, suggesting that the nanomatrix of the non-rubber components was completely continuous.

Keywords

Natural rubber Three-dimensional morphology FIB-SEM Nanomatrix structure Viscoelastic properties 

Notes

Acknowledgments

This work was supported in part by a Grant-in-Aid (21655080) for Challenging Exploratory Research and Grant-in-Aid (223501000) for Scientific Research (B) from Japan Society for the Promotion of Science and JST-JICA SATREPS.

References

  1. 1.
    Kawahara S, Chaikumpollert O, Akabori K, Yamamoto Y (2011) Morphology and properties of natural rubber with nanomatrix of non-rubber components. Polym Adv Technol 22:2665–2667. doi: 10.1002/pat.1803 CrossRefGoogle Scholar
  2. 2.
    Kawahara S, Kawazura T, Sawada T, Isono Y (2003) Preparation and characterization of natural rubber dispersed in nano-matrix. Polymer 44:4527–4531. doi: 10.1016/S0032-3861(03)00415-4 CrossRefGoogle Scholar
  3. 3.
    Kawahara S, Yamamoto Y, Fujii S, Isono Y, Niihara K, Jinnai H, Nishioka H, Takaoka A (2008) FIB-SEM and TEMT observation of highly elastic rubbery material with nanomatrix structure. Macromolecules 41:4510–4513. doi: 10.1021/ma7028538 CrossRefGoogle Scholar
  4. 4.
    Yamamoto Y, Suksawad P, Pukkate N, Horimai T, Wakisaka O, Kawahara S (2009) Photoreactive nanomatrix structure formed by graft-copolymerization of 1,9-nonandiol dimethacrylate onto natural rubber. J Polym Sci A Polym Chem 48:2418–2424. doi: 10.1002/pola.24011
  5. 5.
    Kosugi K, Sutthangkul R, Chaikumpollert O, Yamamoto Y, Sakdapipanich J, Isono Y, Kawahara S (2012) Preparation and characterization of natural rubber with soft nanomatrix structure. Colloid Polym Sci 290:1457–1462. doi: 10.1007/s00396-012-2703-1 CrossRefGoogle Scholar
  6. 6.
    Tohsan A, Phinyocheep P, Kittipoom S, Pattanasiriwisawa W, Ikeda Y (2012) Novel biphasic structured composite prepared by in situ silica filling in natural rubber latex. Polym Adv Technol 23:1335–1342. doi: 10.1002/pat.2051 CrossRefGoogle Scholar
  7. 7.
    Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055. doi: 10.1021/ma300706k CrossRefGoogle Scholar
  8. 8.
    Prasertsri S, Rattanasom N (2012) Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: mechanical and dynamic properties. Polym Test 31:593–605. doi: 10.1016/j.polymertesting.2012.03.003 CrossRefGoogle Scholar
  9. 9.
    Li C, Feng C, Peng Z, Gong W, Kong L (2013) Ammonium-assisted green fabrication of graphene/natural rubber latex composite. Polym Compos 34:88–95. doi: 10.1002/pc.22380 CrossRefGoogle Scholar
  10. 10.
    Chaikumpollert O, Yamamoto Y, Suchiva K, Kawahara S (2012) Protein-free natural rubber. Colloid Polym Sci 290:331–338. doi: 10.1007/s00396-011-2549-y CrossRefGoogle Scholar
  11. 11.
    Jinnai H, Spontak RJ, Nishi T (2010) Transmission electron microtomography and polymer nanostructures. Macromolecules 43:1675–1688. doi: 10.1021/ma902035p CrossRefGoogle Scholar
  12. 12.
    Kato M, Ito T, Aoyama Y, Sawa K, Kaneko T, Kawase N, Jinnai H (2007) Three-dimensional structural analysis of a block copolymer by scanning electron microscopy combined with a focused ion beam. J Polym Sci B Polym Phys 45:677–683. doi: 10.1002/polb.21088 CrossRefGoogle Scholar
  13. 13.
    Akabori K, Yamamoto Y, Kawahara S, Jinnai H, Nishioka H (2009) Field emission scanning electron microscopy combined with focused ion beam for rubbery material with nano-matrix structure. J Phys Conf Ser 184:012027. doi: 10.1088/1742-6596/184/1/012027 CrossRefGoogle Scholar
  14. 14.
    Ray SS (2010) A new possibility for microstructural investigation of clay-based polymer nanocomposite by focused ion beam tomography. Polymer 51:3966–3970. doi: 10.1016/j.polymer.2010.06.025 CrossRefGoogle Scholar
  15. 15.
    Tunnicliffe LB, Thomas AG, Busfield JJC (2012) Silica-rubber microstructure visualised in three dimensions by focused ion beam-scanning electron microscopy. J Microsc 246:77–82. doi: 10.1111/j.1365-2818.2011.03589.x CrossRefGoogle Scholar
  16. 16.
    Ohta K, Sadayama S, Togo A, Higashi R, Tanoue R, Nakamura K (2012) Beam deceleration for block-face scanning electron microscopy of embedded biological tissue. Micron 43:612–620. doi: 10.1016/j.micron.2011.11.001 CrossRefGoogle Scholar
  17. 17.
    Ohtake Y, Yamamoto Y, Gonokami M, Nakamura T, Ishii H, Kawahara S (2013) Degradation profiles in aged EPDM water seals using focused ion beam-scanning electron microscopy. Polym Degrad Stab 98:2489–2496. doi: 10.1016/j.polymdegradstab.2013.08.027 CrossRefGoogle Scholar
  18. 18.
    Chapman AV, Porter M (1988) Sulphur vulcanization chemistry. In: Roberts AD (ed) Natural rubber science and technology. Oxford University Press, Oxford, pp 589–593Google Scholar
  19. 19.
    Dallam RD (1957) Determination of protein and lipid lost during osmic acid fixation of tissues and cellular particulates. J Histochem Cytochem 5:178–181. doi: 10.1177/5.2.178 CrossRefGoogle Scholar
  20. 20.
    Amsterdam A, Schramm M (1966) Rapid release of the zymogen granule protein by osmium tetroxide and its retention during fixation by glutaraldehyde. J Cell Biol 29:199–207. doi: 10.1083/jcb.29.2.199 CrossRefGoogle Scholar
  21. 21.
    Maupin-Szamier P, Pollard TD (1978) Actin filament destruction by osmium tetroxide. J Cell Biol 77:837–852. doi: 10.1083/jcb.77.3.837 CrossRefGoogle Scholar
  22. 22.
    Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58. doi: 10.1083/jcb.17.1.19 CrossRefGoogle Scholar
  23. 23.
    Hopwood D (1972) Theoretical and practical aspects of glutaraldehyde fixation. Histochem J 4:267–303. doi: 10.1007/BF01005005 CrossRefGoogle Scholar
  24. 24.
    Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37:790–802Google Scholar
  25. 25.
    Klinklai W, Saito T, Kawahara S, Tashiro K, Suzuki Y, Sakdapipanich JT, Isono Y (2004) Hyperdeproteinized natural rubber prepared with urea. J Appl Polym Sci 93:555–559. doi: 10.1002/app.20463
  26. 26.
    Kawahara S, Klinklai W, Kuroda H, Isono Y (2004) Removal of proteins from natural rubber with urea. Polym Adv Technol 15:181–184. doi: 10.1002/pat.465 CrossRefGoogle Scholar
  27. 27.
    Tangpakdee J, Tanaka Y (1997) Characterization of sol and gel in Hevea natural rubber. Rubber Chem Technol 70:707–713. doi: 10.5254/1.3538454 CrossRefGoogle Scholar
  28. 28.
    Eng AH, Kawahara S, Tanaka Y (1993) Determination of low nitrogen content of purified natural rubber. J Nat Rubber Res 8:109–113Google Scholar
  29. 29.
    Kawahara S, Kakubo T, Nishiyama N, Tanaka Y, Isono Y, Sakdapipanich JT (2000) Crystallization behavior and strength of natural rubber: skim rubber, deproteinized natural rubber, and pale crepe. J Appl Polym Sci 78:1510–1516. doi: 10.1002/1097-4628(20001121)78:8<1510::AID-APP70>3.0.CO;2-4 CrossRefGoogle Scholar
  30. 30.
    Burfield DR, Lim KL (1983) Differential scanning calorimetry analysis of natural rubber and related polyisoprenes. Measurement of the glass transition temperature. Macromolecules 16:1170–1175. doi: 10.1021/ma00241a024
  31. 31.
    Tanaka Y (2001) Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem Technol 74:355–375. doi: 10.5254/1.3547643 CrossRefGoogle Scholar
  32. 32.
    Takayanagi M, Harima H, Iwata Y (1963) Viscoelastic behavior of polymer blends and its comparison with model experiments. Zairyo 12:389–394. doi: 10.2472/jsms.12.389 Google Scholar
  33. 33.
    Takayanagi M, Uemura S, Minami S (1964) Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J Polym Sci C Polym Symp 5:113–122. doi: 10.1002/polc.5070050111 CrossRefGoogle Scholar
  34. 34.
    Kawahara S, Kakubo T, Suzuki M, Tanaka Y (1999) Thermal properties and crystallization behavior of highly deproteinized natural rubber. Rubber Chem Technol 72:174–180. doi: 10.5254/1.3538787 CrossRefGoogle Scholar
  35. 35.
    Fischer H, Polikarpov I, Craievich AF (2004) Average protein density is a molecular-weight-dependent function. Protein Sci 13:2825–2828. doi: 10.1110/ps.04688204 CrossRefGoogle Scholar
  36. 36.
    Jong L (2005) Dynamic mechanical properties of soy protein filled elastomers. J Polym Environ 13:329–338. doi: 10.1007/s10924-005-5526-z CrossRefGoogle Scholar
  37. 37.
    Jong L (2006) Effect of soy protein concentrate in elastomer composites. Compos A: Appl Sci Manuf 37:438–446. doi: 10.1016/j.compositesa.2005.05.042 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Materials Science and Technology, Faculty of EngineeringNagaoka University of TechnologyNagaokaJapan

Personalised recommendations