Skip to main content
Log in

Aggregation behavior of X-shaped branched block copolymers at the air/water interface: effect of block sequence and temperature

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aggregation behaviors of X-shaped block copolymers, Tetronic 1107 and Tetronic 90R4 with a sequential and reverse architecture, at the air/water interface were studied. The effects of block sequence, concentration, and temperature were investigated by equilibrium surface tension, surface dilational viscoelasticity, and surface tension relaxation measurements. The conformations of Tetronic 1107 and Tetronic 90R4 are different at the air/water interface. The possible adsorption model of Tetronic 1107 is “brush” and that of Tetronic 90R4 is invert “umbrella”. With the increase of temperature, the dilational modulus of Tetronic 1107 solutions decreases, while that of Tetronic 90R4 solutions increases. The mechanisms of the temperature which effects on the conformational transition of Tetronic 1107 and Tetronic 90R4 were discussed in detail. Furthermore, the thermodynamic parameters for the micellization of Tetronic 1107 and Tetronic 90R4 were compared at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nakashima K, Bahadur P (2006) Aggregation of water-soluble block copolymers in aqueous solutions: recent trends. Adv Colloid Interface Sci 123:75–96

    Article  Google Scholar 

  2. Ramírez P, Stocco A, Muňoz J, Miller R (2012) Interfacial rheology and conformations of triblock copolymers adsorbed onto the water–oil interface. J Colloid Interface Sci 378:135–143

    Article  Google Scholar 

  3. Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30:267–277

    Article  CAS  Google Scholar 

  4. Yang ZH, Sharma R (2001) Dynamics of PEO-PPO-PEO and PPO-PEO-PPO triblock copolymers at the air/water interface upon thermal stimulation. Langmuir 17:6254–6261

    Article  CAS  Google Scholar 

  5. Yang L, Alexandridis P, Steytler DC, Kositza MJ, Holzwarth JF (2000) Small angle neutron scattering investigation of the temperature-dependent aggregation behavior of the block copolymer Pluronic L64 in aqueous solution. Langmuir 16:8555–8561

    Article  CAS  Google Scholar 

  6. Tsui HW, Wang JH, Hsu YH, Chen LJ (2010) Study of heat of micellization and phase separation for Pluronic aqueous solutions by using a high sensitivity differential scanning calorimetry. Colloid Polym Sci 288:1687–1696

    Article  CAS  Google Scholar 

  7. De Lisi R, Lazzara G, Lombardo R, Milioto S, Muratore N, Liveri MLT (2006) Thermodynamic behavior of non-ionic triblock copolymers in water at three temperatures. J Solut Chem 35:659–678

    Article  Google Scholar 

  8. Parmar A, Parekh P, Bahadur P (2013) Solubilization and release of a model drug nimesulide from PEO-PPO-PEO block copolymer core-shell micelles: effect of size of PEO blocks. J Solut Chem 42:80–101

    Article  CAS  Google Scholar 

  9. Zou P, Suo JP, Nie L, Feng SB (2012) Temperature-sensitive biodegradable mixed star-shaped block copolymers hydrogels for an injection application. Polymer 53:1245–1257

    Article  CAS  Google Scholar 

  10. Huynh CT, Nguyen QV, Kang SW, Lee DS (2012) Synthesis and characterization of poly(amino urea urethane)-based block copolymer and its potential application as injectable pH/temperature-sensitive hydrogel for protein carrier. Polymer 53:4069–4075

    Article  CAS  Google Scholar 

  11. Nivaggioli T, Tsao B, Alexandridis P, Hatton TA (1995) Microviscosity in Pluronic and Tetronic poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles. Langmuir 11:119–126

    Article  CAS  Google Scholar 

  12. Mansur CRE, Barboza SP, Gonzalez G, Lucas EF (2004) Pluronic × tetronic polyols: study of their properties and performance in the destabilization of emulsions formed in the petroleum industry. J Colloid Interface Sci 271:232–240

    Article  CAS  Google Scholar 

  13. Wu JY, Xu YM, Dabros T, Hamza H (2005) Effect of EO and PO positions in nonionic surfactants on surfactant properties and demulsification performance. Colloids Surf A 252:79–85

    Article  CAS  Google Scholar 

  14. Roques C, Fattal E, Fromes Y (2009) Comparison of toxicity and transfection efficiency of amphiphilic block copolymers and polycationic polymers in striated muscles. J Gene Med 11:240–249

    Article  CAS  Google Scholar 

  15. Chiappetta DA, Alvarez-Lorenzo C, Rey-Rico A, Taboada P, Concheiro A, Sosnik A (2010) N-alkylation of poloxamines modulates micellar assembly and encapsulation and release of the antiretroviral efavirenz. Eur J Pharm Biopharm 76:24–37

    Article  CAS  Google Scholar 

  16. Dong JF, Chowdhry BZ, Leharne SA (2004) Solubilisation of polyarornatic hydrocarbons in aqueous solutions of poloxamine T803. Colloids Surf A 246:91–98

    Article  CAS  Google Scholar 

  17. Fernandez-Tarrio M, Alvarez-Lorenzo C, Concheiro A (2007) Calorimetric approach to tetronic/water interactions. J Therm Anal Calorim 87:171–178

    Article  CAS  Google Scholar 

  18. Dong JF, Armstrong J, Chowdhry BZ, Leharne SA (2004) Thermodynamic modelling of the effect of pH upon aggregation transitions in aqueous solutions of the poloxamine, T701. Thermochim Acta 417:201–206

    Article  CAS  Google Scholar 

  19. De Lisi R, Giammona G, Lazzara G, Milioto S (2011) Copolymers sensitive to temperature and pH in water and in water plus oil mixtures: a DSC, ITC and volumetric study. J Colloid Interface Sci 354:749–757

    Article  Google Scholar 

  20. Alvarez-Lorenzo C, Gonzalez-Lopez J, Fernandez-Tarrio M, Sandez-Macho I, Concheiro A (2007) Tetronic micellization, gelation and drug solubilization: influence of pH and ionic strength. Eur J Pharm Biopharm 66:244–252

    Article  CAS  Google Scholar 

  21. Perreur C, Habas JP, Lapp A, Peyrelasse J (2006) Salt influence upon the structure of aqueous solutions of branched PEO-PPO-PEO copolymers. Polymer 47:841–848

    Article  CAS  Google Scholar 

  22. Kadam Y, Singh K, Marangoni DG, Ma JH, Aswal VK, Bahadur P (2010) Induced micellization and micellar transitions in aqueous solutions of non-linear block copolymer Tetronic (R) T904. J Colloid Interface Sci 351:449–456

    Article  CAS  Google Scholar 

  23. Liu T, Xu GY, Gong HJ, Pang JY, He F (2011) Effect of alcohols on aggregation behaviors of branched block polyether Tetronic 1107 at an air/liquid surface. Langmuir 27:9253–9260

    Article  CAS  Google Scholar 

  24. Frømyr T, Hansen FK, Kotzev A, Laschewsky A (2001) Adsorption and surface elastic properties of corresponding fluorinated and nonfluorinated cationic polymer films measured by drop shape analysis. Langmuir 17:5256–5264

    Article  Google Scholar 

  25. Murray BS, Ventura A, Lallemant C (1998) Dilatational rheology of protein+non-ionic surfactant films at air-water and oil–water interfaces. Colloids Surf A 143:211–219

    Article  CAS  Google Scholar 

  26. Wang YY, Dai YH, Zhang L, Luo L, Chu YP, Zhao S, Li MZ, Wang EJ, Yu JY (2004) Hydrophobically modified associating polyacrylamide solutions: relaxation processes and dilational properties at the oil–water interface. Macromolecules 37:2930–2937

    Article  CAS  Google Scholar 

  27. Wang HR, Gong Y, Lu WC, Chen BL (2008) Influence of nano-SiO2 on dilational viscoelasticity of liquid/air interface of cetyltrimethyl ammonium bromide. Appl Surf Sci 254:3380–3384

    Article  CAS  Google Scholar 

  28. Li YM, Xu GY, Xin X, Cao XR, Wu D (2008) Dilational surface viscoelasticity of hydroxypropyl methyl cellulose and C(n)TAB at air-water surface. Carbohydr Polym 72:211–221

    Article  CAS  Google Scholar 

  29. Gong HJ, Xu GY, Ding H, Shi XF, Tan YB (2009) Aggregation behavior of block polyethers with branched structure at air/water surface. Eur Polym J 45:2540–2548

    Article  CAS  Google Scholar 

  30. Zhao TT, Xu GY, Yuan SL, Chen YJ, Yan H (2010) Molecular dynamics study of alkyl benzene sulfonate at air/water interface: effect of inorganic salts. J Phys Chem B 114:5025–5033

    Article  CAS  Google Scholar 

  31. Wanka G, Hoffmann H, Ulbricht W (1990) The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene) block-copolymers in aqueous solution. Colloid Polym Sci 268:101–117

    Article  CAS  Google Scholar 

  32. De Lisi R, Milioto S (2000) Poly(ethylene oxide)13-poly(propylene oxide)30-poly(ethylene oxide)13 electrolyte interactions in aqueous solutions at some temperatures. Langmuir 16:5579–5583

    Article  Google Scholar 

  33. Alexandridis P, Athanassiou V, Fukuda S, Hatton TA (1994) Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir 10:2604–2612

    Article  CAS  Google Scholar 

  34. Xin X, Xu GY, Zhang ZQ, Chen YJ, Wang F (2007) Aggregation behavior of star-like PEO-PPO-PEO block copolymer in aqueous solution. Eur Polym J 43:3106–3111

    Article  CAS  Google Scholar 

  35. Zana R, Marques C, Johner A (2006) Dynamics of micelles of the triblock copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) in aqueous solution. Adv Colloid Interface Sci 123:345–351

    Article  Google Scholar 

  36. Georgieva D, Schmitt V, Leal-Calderon F, Langevin D (2009) On the possible role of surface elasticity in emulsion stability. Langmuir 25:5565–5573

    Article  CAS  Google Scholar 

  37. Noskov BA (2010) Dilational surface rheology of polymer and polymer/surfactant solutions. Curr Opin Colloid Interface Sci 15:229–236

    Article  CAS  Google Scholar 

  38. Munoz MG, Monroy F, Hernandez P, Ortega F, Rubio RG, Langevin D (2003) Anomalous damping of the capillary waves at the air-water interface of a soluble triblock copolymer. Langmuir 19:2147–2154

    Article  CAS  Google Scholar 

  39. Liggieri L, Miller R (2010) Relaxation of surfactants adsorption layers at liquid interfaces. Curr Opin Colloid Interface Sci 15:256–263

    Article  CAS  Google Scholar 

  40. Cui XH, Zhang L, Luo L, Zhang L, Zhao S, Yu JY (2010) Interfacial dilational properties of model oil and chemical flooding systems by relaxation measurements. Colloids Surf A 369:106–112

    Article  CAS  Google Scholar 

  41. Perreur C, Habas JP, Peyrelasse J, Francois J, Lapp A (2001) Rheological and small-angle neutron scattering studies of aqueous solutions of branched PEO-PPO-PEO copolymers. Phys Rev E 63:031505

    Article  CAS  Google Scholar 

  42. Gong HJ, Xu GY, Shi XF, Liu T, Sun ZW (2010) Comparison of aggregation behaviors between branched and linear block polyethers: mesodyn simulation study. Colloid Polym Sci 288:1581–1592

    Article  CAS  Google Scholar 

  43. Gong HJ, Xu GY, Liu T, Xu L, Zhai XR, Zhang J, Lv X (2012) Aggregation behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an air/water interface: experimental study and molecular dynamics simulation. Langmuir 28:13590–13600

    Article  CAS  Google Scholar 

  44. Inoue T (2009) Micelle formation of polyoxyethylene-type nonionic surfactants in bmimBF(4) studied by H-1 NMR and dynamic light scattering. J Colloid Interface Sci 337:240–246

    Article  CAS  Google Scholar 

  45. Tsui HW, Hsu YH, Wang JH, Chen LJ (2008) Novel behavior of heat of micellization of Pluronics F68 and F88 in aqueous solutions. Langmuir 24:13858–13862

    Article  CAS  Google Scholar 

  46. Bouchemal K, Agnely F, Koffi A, Ponchel G (2009) A concise analysis of the effect of temperature and propanediol-1, 2 on Pluronic F127 micellization using isothermal titration microcalorimetry. J Colloid Interface Sci 338:169–176

    Article  CAS  Google Scholar 

  47. Kadam Y, Singh K, Marangoni DG, Ma JH, Aswal VK, Bahadur P (2010) Thermodynamic of micelle formation of nonlinear block copolymer Tetronic (R) T904 in aqueous salt solution. Colloids Surf A 369:121–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Natural Science Foundation of China (20573067, 20873077) and the Special Program for Major Research of the Science and Technology, China (Grant Nos. 2011ZX05024-004-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiying Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, T., Xu, G. et al. Aggregation behavior of X-shaped branched block copolymers at the air/water interface: effect of block sequence and temperature. Colloid Polym Sci 293, 97–107 (2015). https://doi.org/10.1007/s00396-014-3392-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3392-8

Keywords

Navigation