Colloid and Polymer Science

, Volume 292, Issue 12, pp 3147–3156 | Cite as

Long-chain alkyl sulfonate micelle fission: a molecular dynamics study

  • Armen H. Poghosyan
  • Levon H. Arsenyan
  • Aram A. Shahinyan
Original Contribution

Abstract

In this study, we investigate micelle fission of long-chain alkyl sulfonate molecules using atomistic scale simulation. GROMACS software code with the united atom force field was applied. 0.5-μs parallel molecular dynamics simulation study was conducted for a surfactant/water system consisting of 192 sodium pentadecyl sulfonate and 40,553 water molecules. The large preassembled micelle was ruptured at Krafft above T = 323-K temperature, and we track two ellipsoid-like micelles over the course of the production run. To estimate the micelle shape, we determined the principal moments of inertia and the eccentricity, which proved that the micelles have a pronounced prolate spheroid shape, which agrees well with our previous experimental data. The mechanism of micelle fission was explored in detail. The aggregation number, ionization degree, and other parameters obtained from simulation were consistent with existing experimental finding. The determined parameters in addition to simple visual inspection of trajectories revealed monomer-micelle exchange—with the estimated relaxation time τ1 = 10− 9s. We assume that the exchange process is conditioned by the unequal size of micelles leading to adjustment of aggregation number.

Keywords

Long-chain alkyl sulfonate Molecular dynamics Micelle fission Monomer exchange 

Supplementary material

396_2014_3364_Fig13_ESM.jpg (418 kb)
ESM 1

(JPEG 417 kb)

References

  1. 1.
    Mittal KL (1977) Micellization, solubilization and microemulsions, vol 1 and 2. Plenum Press, NYCrossRefGoogle Scholar
  2. 2.
    Myers, D (1988). Surfactant science and technology, VCH, New York, p 351.Google Scholar
  3. 3.
    Israelachvili (1992) Intermolecular and surface force, 2nd edn. Academic Press, LondonGoogle Scholar
  4. 4.
    Karsa, DR (1999) Industrial application of surfactants 4, Royal Society of Chemistry, Cambridge, p 280Google Scholar
  5. 5.
    Schramm, LL (ed) (2000) Surfactants: fundamentals and applications in the petroleum industry, Cambridge University Press, Cambridge, p 615.Google Scholar
  6. 6.
    McBain JW, Martin HE (1914) J Chem Soc Trans 105:957CrossRefGoogle Scholar
  7. 7.
    Poghosyan AA, Yeghiazaryan GA, Gharabekyan HH, Koetz J, Shahinyan AA (2007) Mol Simul 33:1155CrossRefGoogle Scholar
  8. 8.
    Lessner E, Teubner M, Kahlweit M (1981) J Phys Chem 85:3167CrossRefGoogle Scholar
  9. 9.
    Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Marcel Dekker, New YorkGoogle Scholar
  10. 10.
    Tartar HV (1955) J Phys Chem 59:1195CrossRefGoogle Scholar
  11. 11.
    Saito M, Moroi Y, Matuura R (1982) J Colloid Int Sci 88:578CrossRefGoogle Scholar
  12. 12.
    Cerichelli G, Mancinit G (1997) Curr Opin Colloid Int Sci 2:641CrossRefGoogle Scholar
  13. 13.
    Bruce CD, Berkowitz ML, Perera L, Forbes MDE (2002) J Phys Chem B 106:3788CrossRefGoogle Scholar
  14. 14.
    Sammalkorpi M, Karttunen M, Haataja M (2007) J Phys Chem B 111:11722CrossRefGoogle Scholar
  15. 15.
    Sammalkorpi M, Sanders S, Panagiotopoulos AZ, Karttunen M, Haataja M (2011) J Phys Chem B 115:1403CrossRefGoogle Scholar
  16. 16.
    Sammalkorpi M, Karttunen M, Haataja M (2008) J Am Chem Soc 130:17977CrossRefGoogle Scholar
  17. 17.
    Abel S, Dupradeau F-Y, Marchi M (2012) J Chem Theor Comput 8:4610CrossRefGoogle Scholar
  18. 18.
    Sanders S, Sammalkorpi M, Panagiotopoulos AZ (2012) J Phys Chem B 113:2430CrossRefGoogle Scholar
  19. 19.
    Poghosyan AH, Arsenyan LH, Shahinyan AA (2013) Langmuir 29:29CrossRefGoogle Scholar
  20. 20.
    Lazaridis T, Mallik B, Chen Y (2005) J Phys Chem B 109:15098CrossRefGoogle Scholar
  21. 21.
    Lisal M, Hall CK, Gubbins KE, Panagiotopoulos AZ (2002) J Chem Phys 116:1171CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Guadarama LA, Talsania SK, Mohanty KK, Rajagopalan R (1999) Langmuir 15:437CrossRefGoogle Scholar
  23. 23.
    Kopelevich DI, Panagiotopoulos AZ, Kevrekidis IG (2005) J Chem Phys 122:044907CrossRefGoogle Scholar
  24. 24.
    Levine BG, LeBard DN, DeVane R, Shinoda W, Kohlmeyer A, Klein ML (2011) J Chem Theor Comput 7:4135CrossRefGoogle Scholar
  25. 25.
    Wu R, Deng M, Kong B, Yang X (2009) J Phys Chem B 113:15010CrossRefGoogle Scholar
  26. 26.
    Samanta SK, Bhattacharya S, Maiti PK (2009) J Phys Chem B 113:13545CrossRefGoogle Scholar
  27. 27.
    Sanders SA, Panagiotopoulos AZ (2010) J Chem Phys 132:114902CrossRefGoogle Scholar
  28. 28.
    LeBard DN, Levine BG, Mertmann P, Barr SA, Jusufi A, Sanders S, Klein ML (2012) Soft Matter 8:2385CrossRefGoogle Scholar
  29. 29.
    Kraft JF, Vestergaard M, Schiott B, Thogersen L (2012) J Chem Theor Comput 8:1556CrossRefGoogle Scholar
  30. 30.
    Jingfei C, Jingcheng H (2012) Prog Chem 10:1890Google Scholar
  31. 31.
    Gao J, Li S, Zhang X, Wang W (2010) Phys Chem Chem Phys 12:3219CrossRefGoogle Scholar
  32. 32.
    Pool R, Bolhuis PG (2007) J Chem Phys 126:244703CrossRefGoogle Scholar
  33. 33.
    Markvoort AJ, Smeijers AF, Pieterse K, Vansanten RA, Hilbers PA (2007) J Phys Chem B 111:5719CrossRefGoogle Scholar
  34. 34.
    Yurzhenko AV, Kucher RB (1952) Colloid J 14:219 (in Russian)Google Scholar
  35. 35.
    Hoffman H (1978) Ber Bunsenges 82:988CrossRefGoogle Scholar
  36. 36.
    Cheng DCH, Gulari E (1982) J Colloid Inter Sci 90:410CrossRefGoogle Scholar
  37. 37.
    Palazzesi F, Calvaresi M, Zerbetto F (2011) Soft Matter 7:9148CrossRefGoogle Scholar
  38. 38.
    Weil JK, Smith FD, Striton AJ, Bistline RG (1963) J Am Oil Chem Soc 40:538CrossRefGoogle Scholar
  39. 39.
    Azira H, Tazerouti A, Canselier JP (2008) J Surfactant Deterg 11:279CrossRefGoogle Scholar
  40. 40.
    Azira H, Tazerouti A (2007) J Surfactant Deterg 10:185CrossRefGoogle Scholar
  41. 41.
    Chen L, Xiao J-X, Ma J (2004) Colloid Polym Sci 282:524CrossRefGoogle Scholar
  42. 42.
    van Gusteren W, Berendsen HJC (1996) GROMOS96 manual. Groningen, The NetherlandsGoogle Scholar
  43. 43.
    Berendsen HJC, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91:43CrossRefGoogle Scholar
  44. 44.
    Huibers PDT (1999) Langmuir 15:7546CrossRefGoogle Scholar
  45. 45.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Intermolecular Forces. Reidel, Dordrecht, pp 331–342CrossRefGoogle Scholar
  46. 46.
    Hess B, Bekker H, Berendsen HJC, Fraaije J (1987) J Comput Chem 18:1463CrossRefGoogle Scholar
  47. 47.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684CrossRefGoogle Scholar
  48. 48.
    Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089CrossRefGoogle Scholar
  49. 49.
    Verlet L (1967) Phys Rev 159:98CrossRefGoogle Scholar
  50. 50.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33CrossRefGoogle Scholar
  51. 51.
    Ayvazyan OM, Shahinyan AA (1976) Armenian Chem J 29:667 (in Russian)Google Scholar
  52. 52.
    Shahinyan AA, Nalbandyan YE, Ayvazyan OM, Melkonyan LG, Markaryan SA (1976) Armenian Chem J 29:743 (in Russian)Google Scholar
  53. 53.
    Shahinyan AA, Ayvazyan OM, Nalbandyan YE, Melkonyan LG, Markaryan SA (1977) Colloid J 3:605 (in Russian)Google Scholar
  54. 54.
    Shahinyan AA, Baghdasaryan VV (2003) New Electron J Natur Sci 1:31Google Scholar
  55. 55.
    Quina FH, Nassar PM, Bonilha JBS, Bales BL (1995) J Phys Chem 95:17028CrossRefGoogle Scholar
  56. 56.
    Baumgardt K, Klar G, Strey R (1982) Ber Bunsenges Phys Chem 86:912CrossRefGoogle Scholar
  57. 57.
    Croonen Y, Gelade E, Van der Zegel M, van der Auweraer M, Vandendriessche H, De Schryver FC, Almgren M (1983) J Phys Chem 87:1426CrossRefGoogle Scholar
  58. 58.
    Tanford C (1972) J Phys Chem 76:3020CrossRefGoogle Scholar
  59. 59.
    Annunziata O, Constantino L, D’Errico G, Paduano L, Vitagliano V (1999) J Colloid Interface Sci 216:8CrossRefGoogle Scholar
  60. 60.
    Annunziata O, Constantino L, D’Errico G, Paduano L, Vitagliano V (1999) J Colloid Interface Sci 216:16CrossRefGoogle Scholar
  61. 61.
    Patist A, Jha BK, Oh S-G, Shah DO (1999) J Surfactant Deterg 2:317CrossRefGoogle Scholar
  62. 62.
    Aniansson EAG, Wall SN (1974) J Phys Chem 78:1024CrossRefGoogle Scholar
  63. 63.
    Aniansson EAG, Wall SN (1975) J Phys Chem 79:857CrossRefGoogle Scholar
  64. 64.
    Kuni FM, Rusanov AI, Grinin AP, Shchekih AK (2001) Colloid J 63:723CrossRefGoogle Scholar
  65. 65.
    Turq P, Drifford M, Hayoun M, Perera A, Tabony J (1983) J Phys Lettres 44:471CrossRefGoogle Scholar
  66. 66.
    Marrink SJ, Tieleman DP, Mark AE (2000) J Phys Chem B 104:1024CrossRefGoogle Scholar
  67. 67.
    Bernadino K, de Moura AF (2013) J Phys Chem B 117:7324CrossRefGoogle Scholar
  68. 68.
    Clint JH (1992) Surfactant aggregation. Chapman and Hall, New York, p 283CrossRefGoogle Scholar
  69. 69.
    Iyer J, Blankschtein D (2012) J Phys Chem B 116:6443CrossRefGoogle Scholar
  70. 70.
    Lindman B, Wennerstrom H, Gustavsson H, Kamenka N, Brun B (1980) Pure Appl Chem 52:1307CrossRefGoogle Scholar
  71. 71.
    Gonzalez-Petez A, Del Castillo JL, Czapkiewicz J, Rodríguez JR (2002) Colloid Polym Sci 280:503CrossRefGoogle Scholar
  72. 72.
    Benrraou M, Bales BL, Zana R (2003) J Phys Chem B 107:13432CrossRefGoogle Scholar
  73. 73.
    Verma SK, Ghosh KK (2012) J Surfactant Deterg 15:33CrossRefGoogle Scholar
  74. 74.
    Kroflic A, Sarac B, Bester-Rogac M (2012) Acta Chim Slov 59:564Google Scholar
  75. 75.
    Hsiao CC, Wang T-Y, Tsao H-K (2005) J Chem Phys 122:144702CrossRefGoogle Scholar
  76. 76.
    Anachkov SE, Danov KD, Basheva ES, Kralchevsky PA, Ananthapadmanabhan KP (2012) Adv Colloid Interface Sci 183–184:55CrossRefGoogle Scholar
  77. 77.
    Lebedeva NV, Shahine A, Bales BL (2005) J Phys Chem B 109:19806CrossRefGoogle Scholar
  78. 78.
    Corrin ML, Harkins WD (1947) J Am Chem Soc 69:683CrossRefGoogle Scholar
  79. 79.
    Amos DA, Lynn S, Radke CJ (1998) Langmuir 14:2297CrossRefGoogle Scholar
  80. 80.
    Bales BL (2001) J Phys Chem B 105:6798CrossRefGoogle Scholar
  81. 81.
    Baghdasaryan VV, Shahinyan AA (1997) Colloid J 59:161 (in Russian)Google Scholar
  82. 82.
    Shahinyan AA, Baghdasaryan VV (1987) Ber Bunsenges Phys Chem 91:670CrossRefGoogle Scholar
  83. 83.
    Moroi Y, Otonishi A, Yoshida N (1999) J Phys Chem B 108:8960CrossRefGoogle Scholar
  84. 84.
    Cabane B (1981) J Phys 42:847CrossRefGoogle Scholar
  85. 85.
    Menger FM, Jerkunica JM, Johnston JC (1978) J Am Chem Soc 100:4676CrossRefGoogle Scholar
  86. 86.
    Watanabe K, Ferrario M, Klein ML (1988) J Phys Chem 92:819CrossRefGoogle Scholar
  87. 87.
    Casal HL (1988) J Am Chem Soc 110:5203CrossRefGoogle Scholar
  88. 88.
    Kuhn H, Breitzke B, Rehage H (1998) Colloid Polym Sci 276:824CrossRefGoogle Scholar
  89. 89.
    Shahinyan AA, Vardanyan VI, Aslanyan VM (1979) Colloid J 41:611 (in Russian)Google Scholar
  90. 90.
    Keutsch FN, Saykally RJ (2001) PNAS USA 98:10333CrossRefGoogle Scholar
  91. 91.
    Znamenskiy VS, Green ME (2007) J Chem Theor Comput 3:103CrossRefGoogle Scholar
  92. 92.
    Balasubramanian S, Pal S, Bagchi B (2003) J Indian Inst Sci 83:27Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Armen H. Poghosyan
    • 1
  • Levon H. Arsenyan
    • 2
  • Aram A. Shahinyan
    • 1
  1. 1.The International Scientific—Educational Center of National Academy of Sciences of ArmeniaYerevanArmenia
  2. 2.The Institute of Applied Problem of Physics of National Academy of ArmeniaYerevanArmenia

Personalised recommendations