Colloid and Polymer Science

, Volume 292, Issue 8, pp 1877–1891 | Cite as

Analysis of glass transition and relaxation processes of low molecular weight polystyrene-b-polyisoprene diblock copolymers

  • Prokopios Georgopanos
  • Sofia Rangou
  • Taida Gil Haenelt
  • Clarissa Abetz
  • Andreas Meyer
  • Volkan Filiz
  • Ulrich A. Handge
  • Volker AbetzEmail author
Original Contribution


The objective of this study is to analyze the glass transition temperature and relaxation processes of low molecular weight polystyrene-block-polyisoprene diblock copolymers with different compositions, synthesized via anionic polymerization. Thermal properties were investigated by differential scanning calorimetry and dynamic-mechanical thermal analysis, while the morphologies at room temperature were investigated by transmission electron microscopy and small-angle X-ray scattering. The χN values indicate that the diblock copolymers lie near the weak segregation regime. Three different experimental techniques were applied to determine the dynamic properties, i.e., linear viscoelastic shear oscillations, creep recovery experiments, and dielectric spectroscopy. The rheological experiments were performed above the order–disorder transition temperature where the diblock copolymers behave like a Maxwell fluid. Our results indicate that the presence of the polyisoprene segments strongly influences the monomeric friction coefficient and the tendency to form entanglements above the order–disorder temperature. Consequently, the zero-shear rate viscosity of a diblock copolymer is much lower than the zero-shear rate viscosity of the neat polystyrene block (the polystyrene precursor of the polymerization procedure). Dielectric spectroscopy enables the analysis of relaxation processes below the glass transition of the polystyrene microphase. Frequency sweeps indicate the dynamic glass transition of the polyisoprene blocks, which are partly mixed with the polystyrene blocks, which are always the majority component in the block copolymers of this study.


Diblock copolymers Dynamic-mechanical analysis Creep recovery Dielectric spectroscopy Glass transition 



The authors are thankful to Maren Brinkmann for GPC measurements, Ivonne Ternes for support on rheological experiments, and Silvio Neumann for thermal analysis and 1H-NMR investigations. They gratefully acknowledge financial support from the German Research Foundation (DFG) via SFB 986 “M3,” project A2.


  1. 1.
    Bates FS, Fredrickson GH (1999) Block copolymers—designer soft materials. Phys Today 52(2):32. doi: 10.1063/1.882522 CrossRefGoogle Scholar
  2. 2.
    Abetz V, Simon PFW (2005) Phase behaviour and morphologies of block copolymers. In: Block copolymers I, vol 189. Springer, pp 125–212. doi: 10.1007/12_004
  3. 3.
    Chao C-C, Wang T-C, Ho R-M, Georgopanos P, Avgeropoulos A, Thomas EL (2010) Robust block copolymer mask for nanopatterning polymer films. ACS Nano 4(4):2088–2094CrossRefGoogle Scholar
  4. 4.
    Rangou S, Buhr K, Filiz V, Clodt JI, Lademann B, Hahn J, Jung A, Abetz V (2014) Self-organized isoporous membranes with tailored pore sizes. J Membr Sci 451:266–275CrossRefGoogle Scholar
  5. 5.
    Radjabian M, Koll J, Buhr K, Handge UA, Abetz V (2013) Hollow fiber spinning of block copolymers: influence of spinning conditions on morphological properties. Polymer 54(7):1803–1812CrossRefGoogle Scholar
  6. 6.
    Wode F, Tzounis L, Kirsten M, Constantinou M, Georgopanos P, Rangou S, Zafeiropoulos NE, Avgeropoulos A, Stamm M (2012) Selective localization of multi-wall carbon nanotubes in homopolymer blends and a diblock copolymer. Rheological orientation studies of the final nanocomposites. Polymer 53(20):4438–4447CrossRefGoogle Scholar
  7. 7.
    Du B, Handge UA, Wambach M, Abetz C, Rangou S, Abetz V (2013) Functionalization of MWCNT with P (MMA-co-S) copolymers via ATRP: Influence on localization of MWCNT in SAN/PPE 40/60 blends and on rheological and dielectric properties of the composites. Polymer 54(22):6165–6176CrossRefGoogle Scholar
  8. 8.
    Raue M, Wambach M, Glöggler S, Grefen D, Kaufmann R, Abetz C, Georgopanos P, Handge UA, Mang T, Blümich B (2014) Investigation of historical hard rubber ornaments of Charles Goodyear. Macromol Chem Phys 215(3):221–221CrossRefGoogle Scholar
  9. 9.
    Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, BerlinCrossRefGoogle Scholar
  10. 10.
    Zhukov S, Geppert S, Stühn B, Staneva R, Ivanova R, Gronski W (2002) Dielectric relaxation in liquid crystalline/isotropic block copolymers: effect of nanoscale confinement on the segmental dynamics. Macromolecules 35(22):8521–8530CrossRefGoogle Scholar
  11. 11.
    Boese D, Kremer F (1990) Molecular dynamics in bulk cis-polyisoprene as studied by dielectric spectroscopy. Macromolecules 23(3):829–835CrossRefGoogle Scholar
  12. 12.
    Doxastakis M, Theodorou D, Fytas G, Kremer F, Faller R, Müller-Plathe F, Hadjichristidis N (2003) Chain and local dynamics of polyisoprene as probed by experiments and computer simulations. J Chem Phys 119(13):6883–6894CrossRefGoogle Scholar
  13. 13.
    Boese D, Kremer F, Fetters LJ (1988) Molecular dynamics in linear- and star-branched polymers of cis-polyisoprene as studied by dielectric spectroscopy. Die Makromolekulare Chemie Rapid Commun 9(5):367–371CrossRefGoogle Scholar
  14. 14.
    Boese D, Kremer F, Fetters LJ (1990) Molecular dynamics in linear and multiarmed star polymers of cis-polyisoprene as studied by dielectric spectroscopy. Macromolecules 23(6):1826–1830CrossRefGoogle Scholar
  15. 15.
    Stühn B, Stickel F (1992) Dielectric normal mode spectroscopy in the ordered and disordered states of diblock copolymers. Macromolecules 25(20):5306–5312CrossRefGoogle Scholar
  16. 16.
    Ruzette A-V, Leibler L (2005) Block copolymers in tomorrow’s plastics. Nat Mater 4(1):19–31CrossRefGoogle Scholar
  17. 17.
    Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Multiblock polymers: panacea or Pandora’s box? Science 336(6080):434–440. doi: 10.1126/science.1215368 CrossRefGoogle Scholar
  18. 18.
    Chakkalakal GL, Abetz C, Vainio U, Handge UA, Abetz V (2013) Influence of rheology and morphology on foaming of PS-b-PMMA diblock copolymers and their composites with modified silica nanoparticles. Polymer 54(15):3860–3873CrossRefGoogle Scholar
  19. 19.
    Karatasos K, Anastasiadis S, Semenov A, Fytas G, Pitsikalis M, Hadjichristidis N (1994) Composition fluctuation effects on dielectric normal-mode relaxation in diblock copolymers. 1. Weak segregation regime. Macromolecules 27(13):3543–3552CrossRefGoogle Scholar
  20. 20.
    Alig I, Kremer F, Fytas G, Roovers J (1992) Dielectric relaxation in disordered poly (isoprene-styrene) diblock copolymers near the microphase-separation transition. Macromolecules 25(20):5277–5282CrossRefGoogle Scholar
  21. 21.
    Adhikari R, Michler GH (2004) Influence of molecular architecture on morphology and micromechanical behavior of styrene/butadiene block copolymer systems. Prog Polym Sci 29(9):949–986CrossRefGoogle Scholar
  22. 22.
    Winey KI, Patel SS, Larson RG, Watanabe H (1993) Interdependence of shear deformations and block copolymer morphology. Macromolecules 26(10):2542–2549CrossRefGoogle Scholar
  23. 23.
    Winey KI, Patel SS, Larson RG, Watanabe H (1993) Morphology of a lamellar diblock copolymer aligned perpendicular to the sample plane: transmission electron microscopy and small-angle X-ray scattering. Macromolecules 26(16):4373–4375CrossRefGoogle Scholar
  24. 24.
    Förster S, Khandpur AK, Zhao J, Bates FS, Hamley IW, Ryan AJ, Bras W (1994) Complex phase behavior of polyisoprene-polystyrene diblock copolymers near the order–disorder transition. Macromolecules 27(23):6922–6935CrossRefGoogle Scholar
  25. 25.
    Khandpur AK, Förster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K (1995) Polyisoprene-polystyrene diblock copolymer phase diagram near the order–disorder transition. Macromolecules 28(26):8796–8806CrossRefGoogle Scholar
  26. 26.
    Bates FS, Schulz MF, Khandpur AK, Förster S, Rosedale JH, Almdal K, Mortensen K (1994) Fluctuations, conformational asymmetry and block copolymer phase behaviour. Faraday Discuss 98:7–18CrossRefGoogle Scholar
  27. 27.
    Floudas G, Vlassopoulos D, Pitsikalis M, Hadjichristidis N, Stamm M (1996) Order–disorder transition and ordering kinetics in binary diblock copolymer mixtures of styrene and isoprene. J Chem Phys 104(5):2083. doi: 10.1063/1.470965 CrossRefGoogle Scholar
  28. 28.
    Schwab M, Stühn B (1996) Thermotropic transition from a state of liquid order to a macrolattice in asymmetric diblock copolymers. Phys Rev Lett 76(6):924CrossRefGoogle Scholar
  29. 29.
    Neumann C, Loveday D, Abetz V, Stadler R (1998) Morphology, dynamic mechanical properties, and phase behavior of ABC-triblock copolymers with two semicompatible elastomer blocks. Macromolecules 31(8):2493–2500CrossRefGoogle Scholar
  30. 30.
    Neumann C, Abetz V, Stadler R (1998) Phase behavior of ABC-triblock copolymers with two inherently miscible blocks. Colloid Polym Sci 276(1):19–27CrossRefGoogle Scholar
  31. 31.
    Neumann C, Abetz V, Stadler R (1996) Indication of an order-order-transition by a partial disordering in ABC-triblock copolymers. Polym Bull 36(1):43–50CrossRefGoogle Scholar
  32. 32.
    Yao ML, Watanabe H, Adachi K, Kotaka T (1991) Dielectric relaxation behavior of styrene-isoprene diblock copolymers: bulk systems. Macromolecules 24(10):2955–2962CrossRefGoogle Scholar
  33. 33.
    Tress M, Mapesa EU, Kossack W, Kipnusu WK, Reiche M, Kremer F (2013) Glassy dynamics in condensed isolated polymer chains. Science 341(6152):1371–1374CrossRefGoogle Scholar
  34. 34.
    Mapesa EU, Tress M, Schulz G, Huth H, Schick C, Reiche M, Kremer F (2013) Segmental and chain dynamics in nanometric layers of poly (cis-1, 4-isoprene) as studied by broadband dielectric spectroscopy and temperature-modulated calorimetry. Soft Matter 9(44):10592–10598CrossRefGoogle Scholar
  35. 35.
    Kipnusu WK, Elmahdy MM, Tress M, Fuchs M, Mapesa EU, Smilgies D-M, Zhang J, Papadakis CM, Kremer F (2013) Molecular order and dynamics of nanometric thin layers of poly (styrene-b-1, 4-isoprene) diblock copolymers. Macromolecules 46(24):9729–9737. doi: 10.1021/ma4019334 CrossRefGoogle Scholar
  36. 36.
    Wu S (1992) Predicting chain conformation and entanglement of polymers from chemical structure. Polym Eng Sci 32(12):823–830CrossRefGoogle Scholar
  37. 37.
    Avgeropoulos A, Paraskeva S, Hadjichristidis N, Thomas EL (2002) Synthesis and microphase separation of linear triblock terpolymers of polystyrene, high 1,4-polybutadiene, and high 3,4-polyisoprene. Macromolecules 35(10):4030–4035CrossRefGoogle Scholar
  38. 38.
    Ndoni S, Papadakis CM, Bates FS, Almdal K (1995) Laboratory-scale setup for anionic polymerization under inert atmosphere. Rev Sci Instrum 66(2):1090–1095CrossRefGoogle Scholar
  39. 39.
    Rangou S, Shishatskiy S, Filiz V, Abetz V (2011) Poly(vinyl trimethylsilane) and block copolymers of vinyl trimethylsilane with isoprene: anionic polymerization, morphology and gas transport properties. Eur Polym J 47(4):723–729CrossRefGoogle Scholar
  40. 40.
    Förster S, Timmann A, Konrad M, Schellbach C, Meyer A, Funari S, Mulvaney P, Knott R (2005) Scattering curves of ordered mesoscopic materials. J Phys Chem B 109(4):1347–1360CrossRefGoogle Scholar
  41. 41.
    Mori K, Hasegawa H, Hashimoto T (1985) Small-angle x-ray scattering from bulk block polymers in disordered state. Estimation of χ-values from accidental thermal fluctuations. Polym J 17(6):799–806CrossRefGoogle Scholar
  42. 42.
    Rieger J (2001) The glass transition temperature Tg of polymers—comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Test 20(2):199–204CrossRefGoogle Scholar
  43. 43.
    Abetz V, Müller G, Stadler R, Schlick S (1995) The glass transition of mixtures of polystyrene with alkyl-terminated oligostyrene—experimental evidence for microphase separation in a polymer blend. Macromol Chem Phys 196(11):3845–3857CrossRefGoogle Scholar
  44. 44.
    Abetz V, Müller G, Stadler R, Schlick S (1997) Correction to “The glass transition of mixtures of polystyrene with alkyl-terminated oligostyrene—experimental evidence for microphase separation in a polymer blend”. Macromol Chem Phys 198(7):2333–2335CrossRefGoogle Scholar
  45. 45.
    Han CD, Baek DM, Kim JK, Chu SG (1992) Rheological behavior of block copolymers in the disordered state—effects of molecular-weight and block length ratio. Polymer 33(2):294–305. doi: 10.1016/0032-3861(92)90986-7 CrossRefGoogle Scholar
  46. 46.
    Hamley IW, Castelletto V (2004) Small-angle scattering of block copolymers: in the melt, solution and crystal states. Prog Polym Sci 29(9):909–948Google Scholar
  47. 47.
    Hasegawa H, Tanaka H, Yamasaki K, Hashimoto T (1987) Bicontinuous microdomain morphology of block copolymers. 1. Tetrapod-network structure of polystyrene-polyisoprene diblock polymers. Macromolecules 20(7):1651–1662CrossRefGoogle Scholar
  48. 48.
    Münstedt H, Katsikis N, Kaschta J (2008) Rheological properties of poly (methyl methacrylate)/nanoclay composites as investigated by creep recovery in shear. Macromolecules 41(24):9777–9783CrossRefGoogle Scholar
  49. 49.
    Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Prokopios Georgopanos
    • 1
  • Sofia Rangou
    • 1
  • Taida Gil Haenelt
    • 2
  • Clarissa Abetz
    • 1
  • Andreas Meyer
    • 2
  • Volkan Filiz
    • 1
  • Ulrich A. Handge
    • 1
  • Volker Abetz
    • 1
    • 2
    Email author
  1. 1.Institute of Polymer Research, Helmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.Institute of Physical Chemistry, Department of ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations