Skip to main content
Log in

Cholesteryl-coated carbonyl iron particles with improved anti-corrosion stability and their viscoelastic behaviour under magnetic field

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In principle, bare particles used in magnetorheological suspensions exhibit apparent corrosion instability. To suppress substantially this adverse phenomenon, the carbonyl iron particles modified with cholesteryl group (CI-chol) were suspended in silicone oil. There was found a deterioration of magnetorheological efficiency in comparison when only bare carbonyl iron (CI) particles are used; nevertheless, from the viewpoint of applicability, this change is fully acceptable. However, an anti-corrosion stability was significantly improved. Furthermore, dynamic oscillatory measurements and other characterizations were carried out and analyzed when both CI and CI-chol particles are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bombard AJF, Knobel M, Alcantara MR (2007) Phosphate coating on the surface of carbonyl iron powder and its effect in magnetorheological suspensions. Int J Mod Phys B 21:4858–4867

    Article  CAS  Google Scholar 

  2. Bossis G, Lacis S, Meunier A, Volkova O (2002) Magnetorheological fluids. J Magn Magn Mater 252:224–228

    Article  CAS  Google Scholar 

  3. Klingenberg DJ, Ulicny JC, Golden MA (2007) Mason numbers for magnetorheology. J Rheol 51:883–893

    Article  CAS  Google Scholar 

  4. Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6:5246–5253

    Article  CAS  Google Scholar 

  5. Fang FF, Choi HJ (2010) Fabrication of multiwalled carbon nanotube-wrapped magnetic carbonyl iron microspheres and their magnetorheology. Colloid Polym Sci 288:79–84

    Article  CAS  Google Scholar 

  6. Fang FF, Choi HJ, Choi WS (2010) Two-layer coating with polymer and carbon nanotube on magnetic carbonyl iron particle and its magnetorheology. Colloid Polym Sci 288:359–363

    Article  CAS  Google Scholar 

  7. Kim IG, Song KH, Park BO, Choi BI, Choi HJ (2011) Nano-sized Fe soft-magnetic particle and its magnetorheology. Colloid Polym Sci 289:79–83

    Article  CAS  Google Scholar 

  8. Mrlik M, Sedlacik M, Pavlinek V, Bazant P, Saha P, Peer P, Filip P (2013) Synthesis and magnetorheological characteristics of ribbon-like, polypyrrole-coated carbonyl iron suspensions under oscillatory shear. J Appl Polym Sci 128:2977–2982

    Article  CAS  Google Scholar 

  9. Sedlacik M, Moucka R, Kozakova Z, Kazantseva NE, Pavlinek V, Kuritka I, Kaman O, Peer P (2013) Correlation of structural and magnetic properties of Fe3O4 nanoparticles with their calorimetric and magnetorheological performance. J Magn Magn Mater 326:7–13

    Article  CAS  Google Scholar 

  10. Sedlacik M, Pavlinek V, Saha P, Svrcinova P, Filip P (2012) The role of particles annealing temperature on magnetorheological effect. Mod Phys Lett B 26:1150013

    Article  Google Scholar 

  11. Fang FF, Kim JH, Choi HJ (2009) Synthesis of core-shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer 50:2290–2293

    Article  CAS  Google Scholar 

  12. Fang FF, Liu YD, Choi HJ (2013) Electrorheological and magnetorheological response of polypyrrole/magnetite nanocomposite particles. Colloid Polym Sci 291:1781–1786

    Article  CAS  Google Scholar 

  13. Kuzhir P, Gomez-Ramirez A, Lopez-Lopez MT, Bossis G, Zubarev AY (2011) Non-linear viscoelastic response of magnetic fiber suspensions in oscillatory shear. J Non-Newtonian Fluid Mech 166:373–385

    Article  CAS  Google Scholar 

  14. Bombard AJF, Alcantara MR, Knobel M, Volpe PLO (2005) Experimental study of MR suspensions of carbonyl iron powders with different particle sizes. Int J Mod Phys B 19:1332–1338

    Article  CAS  Google Scholar 

  15. Bombard AJF, Teodoro JVR (2011) Magnetorheological fluids with carbonyl and water atomized iron powders. Int J Mod Phys B 25:943–946

    Article  CAS  Google Scholar 

  16. Liu YD, Lee J, Choi SB, Choi HJ (2013) Silica-coated carbonyl iron microsphere based magnetorheological fluid and its damping force characteristics. Smart Mater Struct 22:065022

    Article  Google Scholar 

  17. Sim HH, Kwon SH, Choi HJ (2013) Xanthan gum-coated soft magnetic carbonyl iron composite particles and their magnetorheology. Colloid Polym Sci 291:963–969

    Article  CAS  Google Scholar 

  18. Iglesias GR, Lopez-Lopez MT, Duran JDG, Gonzalez-Caballero F, Delgado AV (2012) Dynamic characterization of extremely bidisperse magnetorheological fluids. J Colloid Interface Sci 377:153–159

    Article  CAS  Google Scholar 

  19. Jiang WQ, Zhang YL, Xuan SH, Guo CY, Gong XL (2011) Dimorphic magnetorheological fluid with improved rheological properties. J Magn Magn Mater 323:3246–3250

    Article  CAS  Google Scholar 

  20. Ngatu GT, Wereley NM, Karli JO, Bell RC (2008) Dimorphic magnetorheological fluids: exploiting partial substitution of microspheres by nanowires. Smart Mater Struct 17:045022

    Article  Google Scholar 

  21. Sedlacik M, Pavlinek V, Vyroubal R, Peer P, Filip P (2013) A dimorphic magnetorheological fluid with improved oxidation and chemical stability under oscillatory shear. Smart Mater Struct 22:035011

    Article  Google Scholar 

  22. Hu B, Fuchs A, Huseyin S, Gordaninejad F, Evrensel C (2006) Atom transfer radical polymerized MR fluids. Polymer 47:7653–7663

    Article  CAS  Google Scholar 

  23. Kim YH, Lee JE, Cho SK, Park SY, Jeong IB, Jeong MG, Kim YD, Choi HJ, Cho SM (2012) Ultrathin polydimethylsiloxane-coated carbonyl iron particles and their magnetorheological characteristics. Colloid Polym Sci 290:1093–1098

    Article  CAS  Google Scholar 

  24. Liu YD, Fang FF, Choi HJ (2011) Core–shell-structured silica-coated magnetic carbonyl iron microbead and its magnetorheology with anti-acidic characteristics. Colloid Polym Sci 289:1295–1298

    Article  CAS  Google Scholar 

  25. Sedlacik M, Pavlinek V, Lehocky M, Mracek A, Grulich O, Svrcinova P, Filip P, Vesel A (2011) Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids. Colloid Surf A Physicochem Eng Asp 387:99–103

    Article  CAS  Google Scholar 

  26. Sedlacik M, Pavlinek V, Saha P, Svrcinova P, Filip P, Stejskal J (2010) Rheological properties of magnetorheological suspensions based on core–shell structured polyaniline-coated carbonyl iron particles. Smart Mater Struct 19:115008

    Article  Google Scholar 

  27. Machovsky M, Mrlik M, Kuritka I, Pavlinek V, Babayan V (2014) Novel synthesis of core-shell urchin-like ZnO coated carbonyl iron microparticles with enhanced magnetorheological activity. RSC Adv 4:996–1003

    Article  CAS  Google Scholar 

  28. Mrlik M, Ilcikova M, Pavlinek V, Mosnacek J, Peer P, Filip P (2013) Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology. J Colloid Interface Sci 396:146–151

    Article  CAS  Google Scholar 

  29. Langevin P (1905) Magnetism and theory of electrons. Ann Chim Phys 5:70–127

    CAS  Google Scholar 

  30. Shliomis MI (1974) Magnetic fluids. Phys Usp 17:153–167

    Article  Google Scholar 

  31. Laun HM, Schmidt G, Gabriel C, Kieburg C (2008) Reliable plate-plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations. Rheol Acta 47:1049–1059

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author M.S. wish to thank the Grant Agency of the Czech Republic (14-32114P) for financial support. This article was written with support of the Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and the National Budget of Czech Republic, within the framework of the project Centre of Polymer Systems (CZ.1.05/2.1.00/03.0111). M. I. and J. M. thank the Centre of Excellence SAS for Functionalized Multiphase Materials (FUN-MAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mrlik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrlik, M., Ilcikova, M., Sedlacik, M. et al. Cholesteryl-coated carbonyl iron particles with improved anti-corrosion stability and their viscoelastic behaviour under magnetic field. Colloid Polym Sci 292, 2137–2143 (2014). https://doi.org/10.1007/s00396-014-3245-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3245-5

Keywords

Navigation