Skip to main content

Advertisement

Log in

Role of gas cooling time on crystalline morphology and mechanical property of the HDPE parts prepared by gas-assisted injection molding

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, the hierarchical crystalline structures of high-density polyethylene (HDPE) samples molded by gas-assisted injection molding (GAIM) with different gas cooling times were characterized via scanning electron microscopy, two-dimensional wide-angle X-ray scattering, tensile testing techniques, and differential scanning calorimetry, respectively. It was found that the shish-kebab, the oriented lamellae, and common spherulite structures orderly distributed from the skin region to gas channel region of samples. More importantly, the wider area with highly oriented structure (shish-kebab) was obtained in the samples with longer gas cooling time, in that the longer gas cooling time tends to increase the cooling rate of polymer melt, and then much more stretched chains are retained. Although lower crystallinity, the higher degree of orientation, and much more shish-kebab structures lead to significant reinforcement from 28 to 785 MPa of the samples with gas cooling time of 0.5 s to 32 and 879 MPa of the samples with gas cooling time of 20 s for tensile strength and modulus, respectively. Finally, combined the HDPE molecular parameter with characteristic of the GAIM temperature field and flow field, the formation and stability of crystalline morphology in different regions of sample were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Somani RH, Yang L, Zhu L, Hsiao BS (2005) Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 46(20):8587–8623

    Article  CAS  Google Scholar 

  2. Mykhaylyk OO, Chambon P, Impradice C, Fairclough JPA, Terrill NJ, Ryan AJ (2010) Control of structural morphology in shear-induced crystallization of polymers. Macromolecules 43(5):2389–2405

    Article  CAS  Google Scholar 

  3. Sousa R, Reis R, Cunha A, Bevis M (2003) Structural development of HDPE in injection molding. J Appl Polym Sci 89(8):2079–2087

    Article  CAS  Google Scholar 

  4. Pennings A, Kiel A (1965) Fractionation of polymers by crystallization from solution III. On the morphology of fibrillar polyethylene crystals grown in solution. Colloid Polym Sci 205(2):160–162

    CAS  Google Scholar 

  5. Kumaraswamy G, Kornfield JA, Yeh F, Hsiao BS (2002) Shear-enhanced crystallization in isotactic polypropylene. 3. Evidence for a kinetic pathway to nucleation. Macromolecules 35(5):1762–1769

    Article  CAS  Google Scholar 

  6. Azzurri F, Alfonso GC (2005) Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38(5):1723–1728

    Article  CAS  Google Scholar 

  7. Yang H-R, Lei J, Li L, Fu Q, Li Z-M (2012) Formation of interlinked shish-kebabs in injection-molded polyethylene under the coexistence of lightly cross-linked chain network and oscillation shear flow. Macromolecules 45(16):6600–6610

    Article  CAS  Google Scholar 

  8. Kanaya T, Matsuba G, Ogino Y, Nishida K, Shimizu HM, Shinohara T, Oku T, Suzuki J, Otomo T (2007) Hierarchic structure of shish-kebab by neutron scattering in a wide Q range. Macromolecules 40(10):3650–3654

    Article  CAS  Google Scholar 

  9. Balzano L, Rastogi S, Peters GW (2008) Flow induced crystallization in isotactic polypropylene-1, 3: 2, 4-bis (3, 4-dimethylbenzylidene) sorbitol blends: implications on morphology of shear and phase separation. Macromolecules 41(2):399–408

    Article  CAS  Google Scholar 

  10. Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield JA (2007) Molecular basis of the shish-kebab morphology in polymer crystallization. Science 316(5827):1014–1017

    Article  CAS  Google Scholar 

  11. Kalay G, Bevis MJ (1997) The effect of shear controlled orientation in injection moulding on the mechanical properties of an aliphatic polyketone. J Polym Sci, Part B: Polym Phys 35(3):415–430

    Article  CAS  Google Scholar 

  12. Silva CA, Viana JC, Cunha AM (2007) Novel morphologies produced by active shear rotation during injection molding. Macromol Mater Eng 292(5):655–665

    Article  CAS  Google Scholar 

  13. Avery J (2001) Gas-assist injection molding: principles and applications. Hanser, Munich

  14. Li C, Isayev A (2004) Primary and secondary gas penetration during gas‐assisted injection molding Part I: formulation and modeling. Polym Eng Sci 44(5):983–991

    Article  CAS  Google Scholar 

  15. Li C, Shin J, Isayev A, Lee H (2004) Primary and secondary gas penetration during gas‐assisted injection molding Part II: simulation and experiment. Polym Eng Sci 44(5):992–1002

    Article  CAS  Google Scholar 

  16. Zhou H, Li D (2003) Further studies of the gas penetration process in gas‐assisted injection molding. Polym-Plast Technol Eng 42(5):911–923

    Article  CAS  Google Scholar 

  17. Turng L (1995) Development and application of CAE technology for the gas‐assisted injection molding process. Adv Polym Technol 14(1):1–13

    Article  CAS  Google Scholar 

  18. Gao D, Nguyen K, Garcia-Rejon A, Salloum G (1997) Optimization of the gas-assisted injection moulding process using multiple gas-injection systems. J Mater Process Technol 69(1):282–288

    Article  Google Scholar 

  19. Ilinca F, Hétu JF (2002) Three‐dimensional finite element solution of gas‐assisted injection moulding. Int J Numer Methods Eng 53(8):2003–2017

    Article  Google Scholar 

  20. Chen S, Cheng N, Hsu K (1995) Simulation and verification of the secondary gas penetration in a gas-assisted-injection molded spiral tube. Int Commun Heat Mass Transfer 22(3):319–328

    Article  CAS  Google Scholar 

  21. Chen S, Hsu K, Hsu K (1995) Analysis and experimental study of gas penetration in a gas‐assisted injection‐molded spiral tube. J Appl Polym Sci 58(4):793–799

    Article  CAS  Google Scholar 

  22. Der Chien R, Chen S-C, Kang Y, Yeh H-Y (1998) Effect of gas channel design on bending properties of gas-assisted injection molded polystyrene parts. J Reinf Plast Compos 17(13):1213–1230

    Google Scholar 

  23. Chien RD, Chen CS, Chen SC, Yeh HY, Huang DK (1999) Correlation of gas penetration and permeation to the structural performance of gas‐assisted injection‐molded parts. Adv Polym Technol 18(4):303–313

    Article  CAS  Google Scholar 

  24. Chen SC, Hu SY, Chien RD, Jeng MC (1999) Analyses and measurements on bending performance of gas‐assisted injection molded parts. Adv Polym Technol 18(1):1–9

    Article  Google Scholar 

  25. Zheng GQ, Yang W, Yang MB, Chen JB, Li Q, Shen CY (2008) Gas‐assisted injection molded polypropylene: the skin–core structure. Polym Eng Sci 48(5):976–986

    Article  CAS  Google Scholar 

  26. Zheng G, Yang W, Liu C, Yang M, Chen J, Li Q, Shen C (2008) Transcrystallinity in a polycarbonate (PC)/polyethylene (PE) blend prepared by gas-assisted injection molding: a new understanding of its formation mechanism. J Macromol Sci, Part B 47(5):829–836

    Article  CAS  Google Scholar 

  27. Wang L, Yang B, Yang W, Sun N, Yin B, Feng J-M, Yang M-B (2011) Morphology and mechanical property of high-density polyethylene parts prepared by gas-assisted injection molding. Colloid Polym Sci 289(15–16):1661–1671

    Article  CAS  Google Scholar 

  28. Wang L, Yang B, Sun N, Zhang K, Feng J-M, Yang M-B (2012) Role of gas delay time on the hierarchical crystalline structure and mechanical property of HDPE molded by gas-assisted injection molding. Colloid Polym Sci 290(12):1133–1144

    Article  CAS  Google Scholar 

  29. Zheng G-Q, Huang L, Yang W, Yang B, Yang M-B, Li Q, Shen C-Y (2007) Hierarchical crystalline structure of HDPE molded by gas-assisted injection molding. Polymer 48(19):5486–5492

    Article  CAS  Google Scholar 

  30. Yang B, Fu XR, Yang W, Liang SP, Hu S, Yang MB (2009) Simulation of phase‐change heat transfer during cooling stage of gas‐assisted injection molding of high‐density polyethylene via enthalpy transformation approach. Polym Eng Sci 49(6):1234–1242

    Article  CAS  Google Scholar 

  31. Yang B, Fu XR, Yang W, Liang SP, Sun N, Hu S, Yang MB (2009) Effect of melt and mold temperatures on the solidification behavior of HDPE during gas‐assisted injection molding: an enthalpy transformation approach. Macromol Mater Eng 294(5):336–344

    Article  CAS  Google Scholar 

  32. Balzano L, Rastogi S, Peters G (2011) Self-nucleation of polymers with flow: the case of bimodal polyethylene. Macromolecules 44(8):2926–2933

    Article  CAS  Google Scholar 

  33. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers: from structure to flow behavior and back again. Hanser, Munich

  34. Balzano L, Cavallo D, Van Erp TB, Ma Z, Housmans J-W, Fernandez-Ballester L, Peters GW. Dynamics of fibrillar precursors of shishes as a function of stress. In: IOP Conference Series: Materials Science and Engineering, 2010. vol 1. IOP Publishing, p 012005

  35. Hu S, Yang W, Liang S-P, Yang B, Yang M-B (2009) Simulation of gas-assisted injection molding of high-density polyethylene: the role of rheological properties and physical fields on the crystalline morphology. J Macromol Sci, Part B 48(6):1201–1211

    Article  CAS  Google Scholar 

  36. Zheng G-Q, Yang W, Huang L, Li Z-M, Yang M-B, Yin B, Li Q, Liu C-T, Shen C-Y (2007) The role of gas penetration on morphological formation of polycarbonate/polyethylene blend molded by gas-assisted injection molding. J Mater Sci 42(17):7275–7285

    Article  CAS  Google Scholar 

  37. Keller A, Cheng SZD (1998) The role of metastability in polymer phase transitions. Polymer 39(19):4461–4487. doi:10.1016/s0032-3861(97)10320-2

    Article  Google Scholar 

  38. Picken SJ, Aerts J, Visser R, Northolt MG (1990) Structure and rheology of aramid solutions: X-ray scattering measurements. Macromolecules 23(16):3849–3854

    Article  CAS  Google Scholar 

  39. Zhu P-W, Edward G (2008) Orientational distribution of parent–daughter structure of isotactic polypropylene: a study using simultaneous synchrotron WAXS and SAXS. J Mater Sci 43(19):6459–6467

    Article  CAS  Google Scholar 

  40. Schrauwen B, Lv B, Spoelstra A, Govaert L, Peters G, Meijer H (2004) Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 37(23):8618–8633

    Article  CAS  Google Scholar 

  41. Su R, Jiang K, Ge Y, Hu S, Li Z, Li X, Wang K, Zhang Q, Fu Q, Yang F (2011) Shear‐induced fibrillation and resultant mechanical properties of injection‐molded polyamide 1010/isotactic polypropylene blends. Polym Int 60(11):1655–1662

    Article  CAS  Google Scholar 

  42. Na B, Zhang Q, Wang Y, Fu Q (2004) Orientation effects on the deformation and fracture properties of high‐density polyethylene/ethylene vinyl acetate (HDPE/EVA) blends. Polym Int 53(8):1078–1086

    Article  CAS  Google Scholar 

  43. Na B, Wang K, Zhang Q, Du R, Fu Q (2005) Tensile properties in the oriented blends of high-density polyethylene and isotactic polypropylene obtained by dynamic packing injection molding. Polymer 46(9):3190–3198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (grant no. 21174092 and 51121001). The authors are also indebted to Mr. Chao-Liang Zhang from the Huaxi College of Stomatology, Sichuan University, for his kind assistance in morphological observations. In particular, Mr. Guo-qiang pan from the National Synchrotron Radiation Laboratory, University of Science and Technology of China, is gratefully acknowledged for the 2d-WAXS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Bo Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, XC., Zhang, QP., Wang, L. et al. Role of gas cooling time on crystalline morphology and mechanical property of the HDPE parts prepared by gas-assisted injection molding. Colloid Polym Sci 292, 1129–1142 (2014). https://doi.org/10.1007/s00396-013-3152-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3152-1

Keywords

Navigation