Skip to main content

Inclusion complexes of α-cyclodextrins with poly(d,l-lactic acid): structural, characterization, and glass transition dynamics

Abstract

Poly (d,l-lactic acid) (PDLLA) was combined with α-CD to form inclusion complexes (ICs) with distinct PDLLA fractions. The structural changes resulting from this coalescence process were analyzed by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and X-ray diffraction (XRD). The presence of both components in the ICs was confirmed by FTIR. The encapsulated PDLLA fraction was quantified by 1H NMR. XRD data evidenced that it was possible to transform the amorphous PDLLA into a well-organized channel-type crystalline structure. DSC showed that the glass transition temperature of the PDLLA fraction in the ICs was higher than in the pure polymer, indicating that the ultra-confinement effect imposed by the ICs organization clearly limits PDLLA molecular dynamics. The confinement effect on the glass transition dynamics was investigated by unconventional dynamic mechanical analysis experiments, which confirmed that ICs segmental mobility is highly restricted when compared with the one of pure PDLLA. Bulk PDLLA presents a typical VFTH behavior while the ICs dynamics shows an Arrhenius trend.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Jeong S, Kang WY, Song CK, Park JS (2012) Supramolecular cyclodextrin–dye complex exhibiting selective and efficient quenching by lead ions. Dyes Pigments 93:1544–1548

    Article  CAS  Google Scholar 

  2. 2.

    Wang L, Wang JL, Dong CM (2005) Supramolecular inclusion complexes of star-shaped poly(ε-caprolactone) with α-cyclodextrin. J Polym Sci A Polym Chem 43:4721–4730

    Article  CAS  Google Scholar 

  3. 3.

    Ceborska M, Asztemborska M, Lipkowski J (2012) Rare ‘head-to-tail’ arrangement of guest molecules in the inclusion complexes of (+)- and (−)-menthol with β-cyclodextrin. Chem Phys Lett 553:64–67

    Article  CAS  Google Scholar 

  4. 4.

    Celebioglu A, Uyar T (2011) Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir 27:6218–6226

    Article  CAS  Google Scholar 

  5. 5.

    Castiglione F, Crupi V, Majolino D, Mele A, Rossi B, Trotta F et al (2012) Inside new materials: an experimental numerical approach for the structural elucidation of nanoporous cross-linked polymers. J Phys Chem B 116:13133–13140

    Article  CAS  Google Scholar 

  6. 6.

    Williamson BR, Krishnaswamy R, Tonelli AE (2011) Physical properties of poly(ε-caprolactone) coalesced from its α-cyclodextrin inclusion compound. Polymer 52:4517–4527

    Article  CAS  Google Scholar 

  7. 7.

    Zhang S, Yu Z, Govender T, Luo H, Li B (2008) A novel supramolecular shape memory material based on partial α-CD–PEG inclusion complex. Polymer 49:3205–3210

    Article  CAS  Google Scholar 

  8. 8.

    Pinheiro A, Mano JF (2009) Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis. Polym Test 28:89–95

    Article  CAS  Google Scholar 

  9. 9.

    Mano JF (2008) Thermal behaviour and glass transition dynamics of inclusion complexes of α-cyclodextrin with poly(d,l-lactic acid). Macromol Rapid Commun 29:1341–1345

    Article  CAS  Google Scholar 

  10. 10.

    Tonelli AE (2012) Superstructures with cyclodextrins: chemistry and applications. Beilstein J Org Chem 8:1318–1332

    Article  CAS  Google Scholar 

  11. 11.

    Richert R (2011) Dynamics of nanoconfined supercooled liquids. Annu Rev Phys Chem 62:65–84

    Article  CAS  Google Scholar 

  12. 12.

    Korotkova T, Karaeva O, Naberezhnov A, Rysiakiewichz-Pasek E, Korotkov L (2012) Dielectric and mechanical relaxations in the vicinity of glass transitions in confined polar copolymers VDF/Te and VDF/Tr. Solid State Commun 152:846–848

    Article  CAS  Google Scholar 

  13. 13.

    Richert R (2011) Dynamics of nanoconfined supercooled liquids. Annu Rev Phys Chem 62:65–84

    Article  CAS  Google Scholar 

  14. 14.

    McKenna GB (2010) Ten (or more) years of dynamics in confinement: perspectives for 2010. Eur Phys J Spec Top 189:285–302

    Article  Google Scholar 

  15. 15.

    Modestino MA, Paul DK, Dishari S, Petrina SA, Allen FI, Hickner MA et al (2013) Self-assembly and transport limitations in confined Nafion films. Macromolecules 46:867–873

    Article  CAS  Google Scholar 

  16. 16.

    Zuza E, Ugartemendia JM, Lopez A, Meaurio E, Lejardi A, Sarasua JR (2008) Glass transition behavior and dynamic fragility in polylactides containing mobile and rigid amorphous fractions. Polymer 49:4427–4432

    Article  CAS  Google Scholar 

  17. 17.

    Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contributions to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718

    Article  CAS  Google Scholar 

  18. 18.

    Delpouve N, Lixon C, Saiter A et al (2009) Amorphous phase dynamics at the glass transition in drawn semi-crystalline polyester. J Therm Anal Calorim 97:541–546

    Article  CAS  Google Scholar 

  19. 19.

    Delpouve N, Saiter A, Dargent E (2011) Cooperativity length evolution during crystallization of poly(lactic acid). Eur Polym J 47:2414–2423

    Article  CAS  Google Scholar 

  20. 20.

    Hamonic F, Saiter A, Prevosto D et al (2012) Temperature dependence of structural relaxation time in drawn polymers: which is the role of cooperativity? AIP Conf Proc 1459:211–213

    Article  CAS  Google Scholar 

  21. 21.

    Chen C-C, Chueh J-Y, Tseng H, Huang H-M, Lee S-Y (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24:1167–1173

    Article  CAS  Google Scholar 

  22. 22.

    Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly (lactic acid). Polymer 39:267–273

    Article  CAS  Google Scholar 

  23. 23.

    Matusik J, Stodolak E, Bahranowski K (2011) Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Appl Clay Sci 51:102–109

    Article  CAS  Google Scholar 

  24. 24.

    Meaurio E, Lopez-Rodriguez N, Sarasua J (2006) Infrared spectrum of poly (l-lactide): application to crystallinity studies. Macromolecules 39:9291–9301

    Article  CAS  Google Scholar 

  25. 25.

    Tonelli AE (2012) Restructuring polymers via nanoconfinement and subsequent release. Beilstein J Org Chem 8:1318–1332

    Article  CAS  Google Scholar 

  26. 26.

    Dias JCR. Desenvolvimento de um fio de sutura degradável baseado em PLLA com libertação controlada de fármacos. Master Thesis, Universidade do Minho, Portugal, 2011

  27. 27.

    Correia C, Moreira Teixeira LS, Moroni L, Reis RL, van Blitterswijk C, Karperien M et al (2011) Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C 17:717–730

    Article  CAS  Google Scholar 

  28. 28.

    Liu X, Zou Y, Li W, Cao G, Chen W (2006) Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature. Polym Degrad Stab 91:3259–3265

    Article  CAS  Google Scholar 

  29. 29.

    Faucci MT, Melani F, Mura P (2000) 1H-NMR and molecular modelling techniques for the investigation of the inclusion complex of econazole with α-cyclodextrin in the presence of malic acid. J Pharm Biomed Anal 23:25–31

    Article  CAS  Google Scholar 

  30. 30.

    Anselmi C, Centini M, Maggiore M, Gaggelli N, Andreassi M, Buonocore A et al (2008) Non-covalent inclusion of ferulic acid with α-cyclodextrin improves photo-stability and delivery: NMR and modeling studies. J Pharm Biomed Anal 46:645–652

    Article  CAS  Google Scholar 

  31. 31.

    Huang L, Allen E, Tonelli AE (1998) Study of the inclusion compounds formed between α-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(ε-caprolactone). Polymer 39:4857–4865

    Article  CAS  Google Scholar 

  32. 32.

    Mori T, Dong T, Yazawa K, Inoue Y (2007) Preparation of highly transparent and thermally stable films of α-cyclodextrin/polymer inclusion complexes. Macromol Rapid Commun 28:2095–2099

    Article  CAS  Google Scholar 

  33. 33.

    Wenz G, Han B-H, Mueller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 106:782–817

    Article  CAS  Google Scholar 

  34. 34.

    Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contributions to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718

    Article  CAS  Google Scholar 

  35. 35.

    McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17:R261–R524

    Article  Google Scholar 

  36. 36.

    Eastman SA, Kim S, Page KA, Rowe BW, Kang S, Soles CL et al (2012) Effect of confinement on structure, water solubility, and water transport in Nafion thin films. Macromolecules 45:7920–7930

    Article  CAS  Google Scholar 

  37. 37.

    Mano JF, Gómez Ribelles JL, Alves NM, Salmerón Sanchez M (2005) Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer 46:8258–8265

    Article  CAS  Google Scholar 

  38. 38.

    Wool RP, Campanella A (2009) Twinkling fractal theory of the glass transition: rate dependence and time–temperature superposition. J Polym Sci Part B Polym Phys 47:2578–2590

    Article  CAS  Google Scholar 

  39. 39.

    Mano JF (2007) Structural evolution of the amorphous phase during crystallization of poly(l-lactic acid): A synchrotron wide-angle X-ray scattering study. J Non-Cryst Solids 353:2567–2572

    Article  CAS  Google Scholar 

  40. 40.

    Huh KM, Cho YW, Chung H, Kwon IC, Jeong SY, Ooya T, Lee WK, Sasaki S, Yui N (2004) Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and α-cyclodextrin. Macromol Biosci 4:92–99

    Article  CAS  Google Scholar 

  41. 41.

    Dionisio M, Viciosa MT, Wang Y, Mano JF (2005) Macromol Rapid Commun 26:1423

    Article  CAS  Google Scholar 

  42. 42.

    Lixon C, Delpouve N, Saiter A et al (2008) Evidence of cooperative rearranging region size anisotropy for drawn PET. Eur Polym J 44:3377–3384

    Article  CAS  Google Scholar 

  43. 43.

    Delpouve N, Saiter A, Mano JF et al (2008) Cooperative rearranging region size in semi-crystalline poly(l-lactic acid). Polymer 49:3130–3135

    Article  CAS  Google Scholar 

  44. 44.

    Narladkar A, Balnois E, Vignaud G, Grohens Y (2008) Difference in glass transition behavior between semi crystalline and amorphous poly(lactic acid) thin films. Macromol Symp 273:146–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Portuguese Foundation for Science and Technology (FCT) for financial support through the PTDC/FIS/115048/2009 project and to the NMR Portuguese network (PTNMR, Bruker Avance III 400-Univ. Minho). FCT and FEDER (European Fund for Regional Development)-COMPETE-QREN-EU for financial support to the Research Centre, CQ/UM [PEst-C/QUI/UI0686/2011 (FCOMP-01-0124-FEDER-022716)].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Natália M. Alves.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oliveira, T., Botelho, G., Alves, N.M. et al. Inclusion complexes of α-cyclodextrins with poly(d,l-lactic acid): structural, characterization, and glass transition dynamics. Colloid Polym Sci 292, 863–871 (2014). https://doi.org/10.1007/s00396-013-3127-2

Download citation

Keywords

  • Poly(d,l-lactic acid)
  • Inclusion complexes
  • Glass transition dynamics