Advertisement

Colloid and Polymer Science

, Volume 292, Issue 1, pp 5–31 | Cite as

Nanofibrillated cellulose: surface modification and potential applications

  • Susheel KaliaEmail author
  • Sami BoufiEmail author
  • Annamaria Celli
  • Sarita Kango
Invited Review

Abstract

Interest in nanofibrillated cellulose has been increasing exponentially because of its relatively ease of preparation in high yield, high specific surface area, high strength and stiffness, low weight and biodegradability etc. This bio-based nanomaterial has been used mainly in nanocomposites due to its outstanding reinforcing potential. Solvent casting, melt mixing, in situ polymerization and electrospinning are important techniques for the fabrication of nanofibrillated cellulose-based nanocomposites. Due to hydrophilic character along with inherent tendency to form strong network held through hydrogen-bonding, nanofibrillated cellulose cannot uniformly be dispersed in most non-polar polymer matrices. Therefore, surface modification based on polymer grafting, coupling agents, acetylation and cationic modification was used in order to improve compatibility and homogeneous dispersion within polymer matrices. Nanofibrillated cellulose opens the way towards intense and promising research with expanding area of potential applications, including nanocomposite materials, paper and paperboard additive, biomedical applications and as adsorbent.

Keywords

Nanofibrillated cellulose Surface modification Polymer grafting Nanocomposites 

References

  1. 1.
    Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824Google Scholar
  2. 2.
    Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89:461–466Google Scholar
  3. 3.
    Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169Google Scholar
  4. 4.
    Kalia S, Thakur K, Celli A, Kiechel MA, Schauer CL (2013) Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J Environ Chem Eng 1:97–112Google Scholar
  5. 5.
    Turbak AF, Snyder FW, Sandberg KR (1983) Suspensions containing microfibrillated cellulose. U.S. patent no. 4, 3 78, 381Google Scholar
  6. 6.
    Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258Google Scholar
  7. 7.
    Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:243110(1)–243110(3)Google Scholar
  8. 8.
    Clemons C, Sedlmair J, Illman B, Ibach R, Hirschmug C (2013) Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol). Polymer. doi: 10.1016/j.polymer.2013.02.016 Google Scholar
  9. 9.
    Al-Turaif HA (2013) Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose. Prog Org Coat 76:477–481Google Scholar
  10. 10.
    Chinga-Carrascoa G, Averianova N, Gibadullin M, Petrov V, Leirseta I, Syverud K (2013) Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron 44:331–338Google Scholar
  11. 11.
    Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Appl Polym Symp 37. Wiley, New York, pp 815–827Google Scholar
  12. 12.
    Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology, and accessibility. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Appl Polym Symp 37. Wiley, New York, pp 797–813Google Scholar
  13. 13.
    Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026Google Scholar
  14. 14.
    Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165Google Scholar
  15. 15.
    Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85Google Scholar
  16. 16.
    Rodionova G, Saito T, Lenes M, Eriksen O, Gregersen O, Fukuzumi H, Isogai A (2011) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19:705–711Google Scholar
  17. 17.
    Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA (2011) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6:4370–4388Google Scholar
  18. 18.
    Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574Google Scholar
  19. 19.
    Czaja WK, Young DJ, Kawecki M, Brown RMJR (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12Google Scholar
  20. 20.
    Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2009) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585Google Scholar
  21. 21.
    Sukjoon Y, Jeffery SH (2010) Composites, enzyme-assisted preparation of fibrillated cellulose fibers and its effect on physical and mechanical properties of paper sheet composites. Ind Eng Chem Res 49:2161–2168Google Scholar
  22. 22.
    Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494Google Scholar
  23. 23.
    Abdul Khalil HPS, Bhat AH, IreanaYusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979Google Scholar
  24. 24.
    Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460Google Scholar
  25. 25.
    Marques G, Rencoret J, Gutierrez A, del Rio JC (2010) Evaluation of the chemical composition of different non-woody plant fibres used for pulp and paper manufacturing. Open Agric J 4:93–101Google Scholar
  26. 26.
    Alila S, Besbes I, Vilar MR, Mutje P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259Google Scholar
  27. 27.
    Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65Google Scholar
  28. 28.
    Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980Google Scholar
  29. 29.
    de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270Google Scholar
  30. 30.
    Cao XD, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904Google Scholar
  31. 31.
    Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611Google Scholar
  32. 32.
    Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671Google Scholar
  33. 33.
    Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092Google Scholar
  34. 34.
    Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185Google Scholar
  35. 35.
    Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Ganan P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592Google Scholar
  36. 36.
    Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377Google Scholar
  37. 37.
    Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620Google Scholar
  38. 38.
    Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 471:3–19Google Scholar
  39. 39.
    Shamlou PA, Siddiqi SF, Titchener-Hooker NJ (1995) A physical model of high pressure disruption of baker's yeast cells. Chem Eng Sci 50:1383–1391Google Scholar
  40. 40.
    Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber reinforced composites. J Reinf Plast Compos 24:1259–1268Google Scholar
  41. 41.
    Park JI, Saffari PA, Kumar S, Gunther A, Kumacheva E (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415–443Google Scholar
  42. 42.
    Aulin C, Netrval J, Wagberg L, Lindstrom T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305Google Scholar
  43. 43.
    Ahola S, Salmi J, Johansson LS, Laine J, Osterberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282Google Scholar
  44. 44.
    Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093Google Scholar
  45. 45.
    Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278Google Scholar
  46. 46.
    Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69:2434–2437Google Scholar
  47. 47.
    Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023Google Scholar
  48. 48.
    Flint EB, Suslick KS (1991) The temperature of cavitation. Science 253:1397–1399Google Scholar
  49. 49.
    Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115:2756–2762Google Scholar
  50. 50.
    Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication. Part 1. Process optimization. J Appl Polym Sci 113:1270–1275Google Scholar
  51. 51.
    Chen W, Yu H, Liu Y, Chen P, Zhang M, Yunfei H (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811Google Scholar
  52. 52.
    Johnson R, Zink-Sharp A, Renneckar S, Glasser W (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238Google Scholar
  53. 53.
    Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442Google Scholar
  54. 54.
    Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micronanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88Google Scholar
  55. 55.
    Mishra SP, Manent AS, Chabot B, Daneault C (2012) Production of nanocellulose from native cellulose—various options utilizing ultrasound. Bioresources 7:422–436Google Scholar
  56. 56.
    Dong XM, Revol JF, Gray D (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32Google Scholar
  57. 57.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500Google Scholar
  58. 58.
    Madsen B (2004) Properties of plant fibre yarn polymer composites an experimental study. Technical University of Denmark; report BYG·DTU R-082Google Scholar
  59. 59.
    Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194Google Scholar
  60. 60.
    Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425Google Scholar
  61. 61.
    Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691Google Scholar
  62. 62.
    Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441Google Scholar
  63. 63.
    Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158Google Scholar
  64. 64.
    Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527Google Scholar
  65. 65.
    Besbes I, ReiVilar M, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206Google Scholar
  66. 66.
    Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983Google Scholar
  67. 67.
    Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294Google Scholar
  68. 68.
    Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res 23:299–304Google Scholar
  69. 69.
    Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499Google Scholar
  70. 70.
    Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205Google Scholar
  71. 71.
    Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111Google Scholar
  72. 72.
    Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulp. Ind Eng Chem Res 48:11211–11219Google Scholar
  73. 73.
    Andresen M, Johansson L, Tanem B, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677Google Scholar
  74. 74.
    Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater 81:1109–1112Google Scholar
  75. 75.
    Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nanoorder-unit web-like network structure. Appl Phys A Mater 80:155–159Google Scholar
  76. 76.
    d’A Clark J (1954) Properties and treatment of pulp for paper. In: Ott E, Spurlin EM, Grafflin MW (eds) Cellulose and cellulose derivatives. Interscience, New York, pp 621–671Google Scholar
  77. 77.
    Hamad WY (1997) Some microrheological aspects of wood-pulp fibres subjected to fatigue loading. Cellulose 4:51–56Google Scholar
  78. 78.
    Jiang F, Hsieh Y (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40Google Scholar
  79. 79.
    Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996Google Scholar
  80. 80.
    Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491Google Scholar
  81. 81.
    Isogai T, Saito T, Isogai A (2011) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18:421–431Google Scholar
  82. 82.
    Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95:1394–1398Google Scholar
  83. 83.
    Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications: catalytic conversion of renewables. Top Catal 27:49–66Google Scholar
  84. 84.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85Google Scholar
  85. 85.
    Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2013) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym. doi: 10.1016/j.carbpol.2013.08.032 Google Scholar
  86. 86.
    Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849Google Scholar
  87. 87.
    Tejado A, Nur Alam M, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibres into cellulose nanofibres. Cellulose 19:831–842Google Scholar
  88. 88.
    Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I crystalline domains. Carbohydr Polym 61:191–197Google Scholar
  89. 89.
    Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941Google Scholar
  90. 90.
    Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—an enzymatic approach. Bioresources 1:176–188Google Scholar
  91. 91.
    Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344Google Scholar
  92. 92.
    Isto H, Kaj B, Marianna V, Taina K, Pertti N (2012) Process for producing microfibrillated cellulose. PCT/IB10/53044Google Scholar
  93. 93.
    Kopcke V (2008) Improvement on cellulose accessibility and reactivity of different wood pulps. Licentiate thesis, Royal Institute of TechnologyGoogle Scholar
  94. 94.
    Cristobal C, Encarnacion R, Mercedes B, Paloma M, Jose MN, Eulogio C (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700Google Scholar
  95. 95.
    Deep B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997Google Scholar
  96. 96.
    Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725Google Scholar
  97. 97.
    Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose. doi:1007/s10570-013-0036-yGoogle Scholar
  98. 98.
    Kalia S, Dufresne A, Cherian BM, Kaith BS, Av’erous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci. doi: 10.1155/2011/837875 (Article ID 837875) Google Scholar
  99. 99.
    Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci. doi: 10.1016/j.progpolymsci.2013.05.014 Google Scholar
  100. 100.
    Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalisation of cellulose nanocrystals. Soft Matter 4:2238–2244Google Scholar
  101. 101.
    Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 9999:1–16Google Scholar
  102. 102.
    Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerisation (SI-ATRP). Langmuir 25:8280–8286Google Scholar
  103. 103.
    Lonnberg H, Fogelstrom L, Berglund MASASL, Malmstrom E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(e-caprolactone)—synthesis and characterization. Eur Polym J 44:2991–2997Google Scholar
  104. 104.
    Thompson TT, Bastarrachea MIL, Vega MJA (2005) Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylic acid). Carbohydr Polym 62:67–73Google Scholar
  105. 105.
    Xiao M, Li S, Chanklin W, Zheng A, Xiao H (2011) Surface initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83:512–519Google Scholar
  106. 106.
    Li S, Xiao M, Zheng A, Xiao H (2011) Cellulose microfibrils grafted with PBA via surface initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromolecules 12:3305–3312Google Scholar
  107. 107.
    Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45Google Scholar
  108. 108.
    Mishra AR, Srinivasan R, Gupta P (2003) Psyllium-g-polyacrylonitrile: synthesis and characterization. Colloid Polym Sci 281:187–189Google Scholar
  109. 109.
    Littunen K, Hippi U, Johansson LS, Osterberg M, Tammelinc T, Laine J, Seppala J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047Google Scholar
  110. 110.
    Lonnberg H, Larsson K, Lindstrom T, Hult A, Malmstrom E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites—influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433Google Scholar
  111. 111.
    Yi J, Xu QX, Zhang XF, Zhang HL (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412Google Scholar
  112. 112.
    Xu Q, Yi J, Zhang X, Zhang H (2008) A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur Polym J 44:2830–2837Google Scholar
  113. 113.
    Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Sterberg MO, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 2010:2683–2691Google Scholar
  114. 114.
    Araki J, Wada M, Kuga S (2001) Steric stabilisation of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27Google Scholar
  115. 115.
    Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296Google Scholar
  116. 116.
    Monte SJ, Kenrich Petrochemicals, Inc. (1995) Ken-React reference manual—titanate, zirconate and aluminate coupling agents, 3rd rev. edn. Kenrich Petrochemicals, BayonneGoogle Scholar
  117. 117.
    Gousse C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575Google Scholar
  118. 118.
    Lu J, Drzal LT (2010) Microfibrillated cellulose/cellulose acetate composites: effect of surface treatment. J Polym Sci Polym Phys 48:153–161Google Scholar
  119. 119.
    Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127Google Scholar
  120. 120.
    Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464Google Scholar
  121. 121.
    Yakubu A, Umar TM, Mohammed SSD (2011) Chemical modification of microcrystalline cellulose: improvement of barrier surface properties to enhance surface Interactions with some synthetic polymers for biodegradable packaging material processing and applications in textile, food and pharmaceutical industry. Adv Appl Sci Res 2:532–540Google Scholar
  122. 122.
    Tingaut P, Eyholzer C, Zimmermann T (2011) Functional polymer nanocomposite materials from microfibrillated cellulose. In: Hashim A (ed) Advances in nanocomposite technology. Intech, Croatia, pp 319–334Google Scholar
  123. 123.
    Rodionova G, Lenes O, Eriksen O, Gregersen (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134Google Scholar
  124. 124.
    Hill CAS, Cetin NS, Ozmen N (2000) Potential catalysts for the acetylation of wood. Holzforschung 54:269–272Google Scholar
  125. 125.
    Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307Google Scholar
  126. 126.
    Karppinen A, Vesterinen AH, Saarinen T, Pietikainen P, Seppala J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390Google Scholar
  127. 127.
    Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanoparticle Res 13:773–782Google Scholar
  128. 128.
    Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331Google Scholar
  129. 129.
    Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212Google Scholar
  130. 130.
    Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580Google Scholar
  131. 131.
    Ramazanov MA, Ali-Zade RA, Agakishieva PB (2010) Structure and magnetic properties of nanocomposites on the basis PE + Fe3O4 и PVDF + Fe3O4. Dig J Nanomater Biostructures 5:727–733Google Scholar
  132. 132.
    Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367Google Scholar
  133. 133.
    Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson LS, Seppala J (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J 49:335–344Google Scholar
  134. 134.
    Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956Google Scholar
  135. 135.
    Littunen K, Hippi U, Saarinen T, Seppälä J (2013) Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites. Carbohydr Polym 91:183–190Google Scholar
  136. 136.
    Liu A, Berglund LA (2013) Fire-retardant and ductile clay nanopaper biocomposites based on montmorillonite in matrix of cellulose nanofibers and carboxymethyl cellulose. Eur Polym J 49:940–949Google Scholar
  137. 137.
    Winuprasith T, Suphantharika M (2013) Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll 32:383–394Google Scholar
  138. 138.
    Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626Google Scholar
  139. 139.
    Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106Google Scholar
  140. 140.
    Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192Google Scholar
  141. 141.
    Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747Google Scholar
  142. 142.
    Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos Part A Appl Sci 39:685–689Google Scholar
  143. 143.
    Gong G, Pyo J, Mathew AP, Oksman K (2011) Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Compos Part A Appl Sci 42:1275–1282Google Scholar
  144. 144.
    Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A Appl Sci 36:1486–1493Google Scholar
  145. 145.
    Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and microfibrillated cellulose. Compos Sci Technol 68:908–914Google Scholar
  146. 146.
    Plummer CJG, Choo CKC, Boissard CIR, Bourban P-E, Månson J-AE (2013) Morphological investigation of polylactide/microfibrillated cellulose composites. Colloid Polym Sci. doi: 10.1007/s00396-013-2968-z Google Scholar
  147. 147.
    Borges AC, Eyholzer C, Duc F, Bourban P, Tingaut P, Zimmermann T, Pioletti DP, Månson JE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421Google Scholar
  148. 148.
    Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L, Seppälä J (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J49:335–344Google Scholar
  149. 149.
    Nystrom G, Mihranyan A, Razaq A, Lindstrom T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B114:4178–4182Google Scholar
  150. 150.
    Fortunato G, Zimmermann T, Lubben J, Bordeanu N, Hufenus R (2012) Reinforcement of polymeric submicrometer sized fibers by microfibrillated cellulose. Macromol Mater Eng 297:576–584Google Scholar
  151. 151.
    Medeiros ES, Mattoso LHC, Ito EN, Gregorski KS, Robertson GH, Offeman RD, Wood DF, Orts WJ, Imam SH (2008) Electrospun nanofibers of poly(vinyl alcohol) reinforced with cellulose nanofibrils. J Biobased Mater Bioenergy 2:1–12Google Scholar
  152. 152.
    Gopalakrishna H (2012) Electrospinning composite nanofibers of cellulose. J Purdue Undergrad Res 2:84. doi: 10.5703/1288284314693 Google Scholar
  153. 153.
    Xiang C, Frey MW (2008) Nanocomposite fibers electrospun from biodegradable polymers. The 235th ACS National Meeting, New Orleans, LA, April 6–10, 2008Google Scholar
  154. 154.
    Valo H, Kovalainen M, Laaksonen P, Hakkinen M, Auriola S, Peltonen L, Linder M, Jarvinen K, Hirvonen J, Laaksonen T (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-enhanced stability and release. J Control Release 156:390–397Google Scholar
  155. 155.
    Eyholzer C, Borges de Couraca A, Duc F, Bourban PE, Tingaut P, Zimmermann T, Manson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427Google Scholar
  156. 156.
    Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298Google Scholar
  157. 157.
    Mathew AP, Oksman K, Pierron D, Harmad M-F (2012) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 19:139–150Google Scholar
  158. 158.
    Shimotoyodome A, Suzuki J, Kumamoto Y, Hase T, Isogai A (2011) Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12:3812–8Google Scholar
  159. 159.
    Cherian BM, Leao AL, Ferreira de Souza S, Costa LMM, Molina de Olyveira G, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798Google Scholar
  160. 160.
    Sang Y, Li F, Gu Q, Liang C, Chen J (2008) Heavy metal-contaminated ground water treatment by novel nanofiber membrane. Desalination 223:349–360Google Scholar
  161. 161.
    Belhalfaoui B, Aziz A, Elandaloussi EH, Oualia MS, De Menorval LC (2009) Succinate-bonded cellulose: a regenerable and powerful sorbent for cadmium removal from spiked high-hardness groundwater. J Hazard Mater 169:831–837Google Scholar
  162. 162.
    Nomanbhay SM, Palanisamy K (2005) Removal of heavy metal from industrial waste water using chitosan coated oil palm shell charcoal. Electron J Biotechnol 8:43–53Google Scholar
  163. 163.
    Ricordel S, Taha S, Cisse I, Dorange G (2001) Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep Purif Technol 24:389–401Google Scholar
  164. 164.
    Stephen M, Catherine N, Brenda M, Andrew K, Leslie P, Corrinec G (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192:922–927Google Scholar
  165. 165.
    Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108Google Scholar
  166. 166.
    Maatar W, Alila S, Boufi S (2013) Cellulose based organogel as an adsorbent for dissolved organic compounds. Ind Crop Prod 49:33–42Google Scholar
  167. 167.
    Gonzalez I, Boufi S, Pe’lach MA, Alcala’ M, Vilaseca F, Mutje’ P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. Bioresources 7:5167–5180Google Scholar
  168. 168.
    Hii C, Gregersen OW, Chinga-Carrasco G, Eriksen O (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nordic Pulp Pap Res J 27:388–396Google Scholar
  169. 169.
    Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020Google Scholar
  170. 170.
    Gonzalez I, Vilaseca F, Alcalá M, Pèlach MA, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20:1425–1435Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaBolognaItaly
  2. 2.Department of ChemistryBahra UniversityWaknaghatIndia
  3. 3.LMSEUniversity of SfaxSfaxTunisia
  4. 4.Department of Physics and Materials ScienceJaypee University of Information TechnologyWaknaghatIndia

Personalised recommendations