Skip to main content
Log in

Behavior of polymer chains grafted from latex particles at soft interfaces

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We have studied the behaviors of a poly(methyl methacrylate) (PMMA) chains anchored to polystyrene particles at air/water and oil/water interfaces to recognize the roles of oil molecules in the PMMA property at the interfaces. Through the comparison of π-A isotherms we found two aspects of unique structural and rheological characteristics observed in PMMA-grafted polystyrene latex (PSL-PMMA) monolayer system in common. (1) The π-A isotherms showed surface pressure increase at larger occupied area compared to the PSL-PMMA size in solution at three different types of interfaces in most cases. (2) Compressional modulus, C s −1, obtained by π-A isotherm analysis for PSL-PMMA at interfaces, showed the tendency to decrease with molecular weight of PMMA. This is opposite to that of PMMA homopolymer at interfaces. The effect of oil molecules on PSL-PMMA system at interfaces are found both in the difference of occupied area and C s −1. The occupied areas were larger for the isotherms at the oil/water interfaces than those at the air/water interface in most cases, which suggested the reduced attractive interactions between anchored polymers by oil molecules. On the other hand, C s −1 of PMMA monolayers is strongly dependent on the constituents of the interface and the order of C s −1 is air/water > decane/water > dibutyl ether/water interfaces. The difference between oil species was not explained only by PMMA/oil interaction in bulk, but we suggested that interfacial tension of oil/water interface affects the miscibility of oil molecules with PMMA to cause higher miscibility between PMMA and dibutyl ether at the oil/water interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jones RAL, Richards RW (1999) Polymers at surfaces and interfaces. Cambridge University Press, Cambridge

    Google Scholar 

  2. Kawaguchi M (1993) Thermodynamic, structural and rheological properties of polymer films at the air–water interface. Prog Polym Sci 18:341–376

    Article  CAS  Google Scholar 

  3. Yuba T, Yokoyama S, Kakimoto M, Imai Y (1994) Observation of phase-separated polymeric LB films using scanning probe microscopy. Adv Mater 6:888–889

    Article  CAS  Google Scholar 

  4. Zhu J, Eisenberg A, Lennox RB (1991) Interfacial behavior of block polyelectrolytes. 1. Evidence for novel surface micelle formation. J Am Chem Soc 113:5583–5588

    Article  CAS  Google Scholar 

  5. Lin B, Rice SA, Weitz DA (1993) Static and dynamic evanescent wave light scattering studies of diblock copolymers adsorbed at the air/water interface. J Chem Phys 99:8308–8324

    Article  CAS  Google Scholar 

  6. Kumaki J, Nishikawa Y, Hashimoto T (1996) Visualization of single-chain conformations of a synthetic polymer with atomic force microscopy. J Am Chem Soc 118:3321–3322

    Article  CAS  Google Scholar 

  7. Ohno K, Koh K, Tsujii Y, Fukuda T (2003) Fabrication of ordered arrays of gold nanoparticles coated with high-density polymer brushes. Angew Chem Int Ed 42:2751–2754

    Article  CAS  Google Scholar 

  8. Morinaga T, Ohno K, Tsujii Y, Fukuda T (2007) Two-dimensional ordered arrays of monodisperse silica particles grafted with concentrated polymer brushes. Eur Polym J 43:243–248

    Article  CAS  Google Scholar 

  9. Shan J, Nuopponen M, Jiang H, Viitala T, Kauppinen E, Kontturi K, Tenhu H (2005) Amphiphilic gold nanoparticles grafted with poly(N-isopropylacrylamide) and polystyrene. Macromolecules 38:2918–2926

    Article  CAS  Google Scholar 

  10. Carrot G, Gal F, Cremona C, Vinas J, Perez H (2009) Polymer-grafted-platinum nanoparticles: from three-dimensional small-angle neutron scattering study to tunable two-dimensional array formation. Langmuir 25:471–478

    Article  CAS  Google Scholar 

  11. Matyjaszewski K, Wang J-L, Grimaud T, Shipp DA (1998) Controlled/“living” atom transfer radical polymerization of methyl methacrylate using various initiation systems. Macromolecules 31:1527–1534

    Article  Google Scholar 

  12. Tsuji S, Kawaguchi H (2005) Self-Assembly of poly(N-isopropylacrylamide)-carrying microspheres into two-dimensional colloidal arrays. Langmuir 21:2434–2437

    Article  CAS  Google Scholar 

  13. Yockell-Lelievre H, Desbiens J, Ritcey AM (2007) Two-dimensional self-organization of polystyrene-capped gold nanoparticles. Langmuir 23:2843–2850

    Article  CAS  Google Scholar 

  14. Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41

    Article  CAS  Google Scholar 

  15. Mouri E, Okazaki Y, Tatsuno S, Karakawa H, Yoshinaga K (2006) Particle monolayer formation at the air–water interface by silica particle with well-defined grafted polymer. J Polym Sci Part B Polym Phys 44:2789–2797

    Article  CAS  Google Scholar 

  16. Mouri E, Okazaki Y, Yoshinaga K, Matsuoka H (2009) X-ray reflectometry confirms polymer-grafted silica particle monolayer formation at the air–water interface. J Nanosci Nanotechnol 9:327–333

    Article  CAS  Google Scholar 

  17. Mouri E, Terada M, Koga R, Karakawa H, Yoshinaga K (2010) Particle monolayer formation with arrayed structure by PMMA-grafted polystyrene latex at the air–water interface. J Nanosci Nanotechnol 10:5838–5846

    Article  CAS  Google Scholar 

  18. Mouri E, Okazaki Y, Komune S, Yoshinaga K (2011) Effect of grafted polymer species on particle monolayer structure at the air–water interface. J Nanosci Nanotechnol 11:2486–2495

    Article  CAS  Google Scholar 

  19. Thoma T, Mőhwald H (1994) Phospholipid monolayers at hydrocarbon/water interfaces J Colloid Interface Sci 162:340–349

    Article  CAS  Google Scholar 

  20. Galet L, Pezron I, Kunz W, Larpent C, Zhu J, Lheveder C (1999) Selective complexation of copper ions in monolayers of a new amphiphilic cage molecule at the liquid/air and liquid/liquid interfaces. Colloids Surf A 151:85–96

    Article  CAS  Google Scholar 

  21. Aveyard R, Clint JH, Nees D, Quirke N (2000) Structure and collapse of particle monolayers under lateral pressure at the octane/aqueous surfactant solution interface. Langmuir 16:8820–8828

    Article  CAS  Google Scholar 

  22. Schwartz H, Harel Y, Efrima S (2001) Surface behavior and buckling of silver interfacial colloid films. Langmuir 17:3884–3892

    Article  CAS  Google Scholar 

  23. Kubowicz S, Hartmann MA, Daillant J, Sanyal MK, Agrawal VV, Blot C, Konovalov O, Mőhwald H (2009) Gold nanoparticles at the liquid–liquid interface: X-ray study and Monte Carlo simulation. Langmuir 25:952–958

    Article  CAS  Google Scholar 

  24. Davis JT, Rideal EK (1963) Interfacial phenomena. Second Ed. Academic, New York, Chap.5

  25. Israelachvili JN (1992) Intermolecular and surface forces. Second Ed. Academic, London, Chap.11

  26. Polymer Handbook. (1999) Brandrup J, Immergut E H, Grulke E A, Abe A, Bloch D R Eds. John Wiley & Sons, New Jersey, p. V-87

  27. Romberger AB, Eastman DP, Hunt JL (1969) Evidence for structure in plastics from light scattering. J Chem Phys 51:3723–3727

    Article  CAS  Google Scholar 

  28. Bin-ran K (2004) Nihon Kagaku-kai Ed. Maruzen, Tokyo, p. II-88

  29. Hickel A, Radke CJ, Blanch HW (2001) Role of organic solvents on Pa-hydroxynitrile lyase interfacial activity and stability. Biotechnol Bioeng 74:18–28

    Article  CAS  Google Scholar 

  30. Petrov JG, Polymeropoulos EE, Mőhwald H (2000) Langmuir monolayers with fluorinated groups in the hydrophilic head 1. Comparison of trifluoroethyl behenate and ethyl behenate monolayers: molecular models, mechanical properties, stability. Langmuir 16:7411–7420

    Article  CAS  Google Scholar 

  31. Maestro A, Ortega F, Monroy F, Kragel J, Miller R (2009) Molecular weight dependence of the shear rheology of poly(methyl methacrylate) Langmuir films: a comparison between two different rheometry techniques. Langmuir 25:7393–7400

    Article  CAS  Google Scholar 

  32. Carino SR, Duran RS, Baney RH, Gower LA, He L, Sheth PK (2001) Chemical cross-linking, surface compressional modulus, and viscosity of n-octadecyltrimethoxy silane monolayers. J Am Chem Soc 123:2103–2104

    Article  CAS  Google Scholar 

  33. Kawaguchi M, Sauer BB, Yu H (1989) Polymeric monolayer dynamics at the air/water interface by surface light scattering. Macromolecules 22:1735–1743

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by JSPS KAKENHI Grant Numbers 19750099, 24850015. E.M. deeply appreciates the discussion with Prof. Hiroshi Maeda (Professor emeritus, Kyushu University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiko Mouri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 927 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouri, E., Sakamori, H., Yoshinaga, K. et al. Behavior of polymer chains grafted from latex particles at soft interfaces. Colloid Polym Sci 292, 547–555 (2014). https://doi.org/10.1007/s00396-013-3097-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3097-4

Keywords

Navigation