Skip to main content
Log in

Concentration–polarization effect of poly(sodium styrene sulfonate) on size distribution of colloidal silver nanoparticles during diafiltration experiments

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polyelectrolyte (PEL)-based dual systems and nanoparticles (NPs) are two topics which have generated great interest as a result of their many and novel applications. Here, PEL–NPs system which appears transitorily when a high molecular weight PEL solution is mixed with metal NP colloidal dispersions during diafiltration is studied. The aim of this paper was to analyze the concentration–polarization effect of PEL molecules on size distribution of NPs capable to pass through the ultrafiltration membrane. Poly(sodium styrene sulfonate) (PSSNa) and silver nanoparticles (AgNPs) were used as PEL and metal NP colloidal dispersion, respectively. It was seen that particle size decreased from 42.4 ± 37.8 to 10.1 ± 0.7 nm in the presence of PSSNa and concentration–polarization. In addition, our results indicate that polarization–concentration phenomenon can be used to modify the size distribution of NP colloidal dispersions, that by changes of polarization–concentration features is possible the modification of NP size in the permeate during diafiltration experiments and that in presence of concentration–polarization, PSSNa was only a modifier factor of medium. In addition, it was observed that exclusion size of ultrafiltration membrane is an important element for establishing of particle size in the permeate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AgNPs:

Silver nanoparticles

FT-IR:

Fourier-transform infrared

GPM:

Gel polarization model

MWCO:

Molecular weight cut-off

NPs:

Nanoparticles

PEL:

Polyelectrolyte

PSSNa:

Sodium poly(styrene sulfonate)

rcf:

Relative centrifugal force

TEM:

Transmission electron microscopy

References

  1. Qiang Z, Quanfu F, Yanli J, Jinwen Q, Congjie G (2011) Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. J Membr Sci 379:19–45

    Article  Google Scholar 

  2. Hansson P (2006) Interaction between polyelectrolyte gels and surfactants of opposite charge. Curr Opin in Colloid Interf Sci 11:351–362

    Article  CAS  Google Scholar 

  3. Preetz C, Rübe A, Reiche I, Hause G, Mäder K (2008) Preparation and characterization of biocompatible oil-loaded polyelectrolyte nanocapsules, Nanomedicine. Nanotechn Biol Med 4:106–114

    Article  CAS  Google Scholar 

  4. Guo Y, Wang D, Liu S, Zhang S (2013) Fabrication and tribological properties of polyelectrolyte multilayers containing in situ gold and silver nanoparticles. Colloids Surf A Physicochem Eng Asp 417:1–9

    Article  CAS  Google Scholar 

  5. Bucatariu F, Fundueanu G, Hitruc G, Dragan E (2011) Single polyelectrolyte multilayers deposited onto silica microparticles and silicon wafers, Colloids and Surfaces A: Physicochem. Eng Asp 380:111–118

    Article  CAS  Google Scholar 

  6. Tripathi B, Dubey N, Stamm M (2013) Functional polyelectrolyte multilayer membranes for water purification applications. J Hazard Mat 252–253:401–412

    Article  Google Scholar 

  7. Shulevich Y, Petzold G, Navrotskii A, Novakov I (2012) Properties of polyelectrolyte–surfactant complexes obtained by polymerization of an ionic monomer in a solution of an oppositely charged surfactant, Colloids and Surfaces A: Physicochem. Eng Asp 415:148–152

    Article  CAS  Google Scholar 

  8. Thünemann A (2002) Polyelectrolyte–surfactant complexes (synthesis, structure and materials aspects). Prog Polym Sci 27:1473–1572

    Article  Google Scholar 

  9. van der Gucht J, Spruijt E, Lemmers M, Cohen MA (2011) Polyelectrolyte complexes: bulk phases and colloidal systems. J Colloid Interf Sci 361:407–422

    Article  Google Scholar 

  10. Lu X, Gao H, Li C, Yang Y, Wang Y, Fan Y, Wu G, Ma J (2012) Polyelectrolyte complex nanoparticles of amino poly(glycerol methacrylate)s and insulin. Inter J Pharm 423:195–201

    Article  CAS  Google Scholar 

  11. Tian Z, Jiang S, Liu Z, Li L (2007) Polyelectrolyte-stabilized Pt nanoparticles as new electrocatalysts for low temperature fuel cells. Electrochem Comm 9:1613–1618

    Article  CAS  Google Scholar 

  12. Prasad J, Geckeler K (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Article  Google Scholar 

  13. Suber L, Sondi I, Matijevic E, Goia D (2005) Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions. J Colloid Interf Sci 288:489–495

    Article  CAS  Google Scholar 

  14. Manikam VR, Cheong KY, Razak KA (2011) Chemical reduction methods for synthesizing Ag and Al nanoparticles and their respective nanoalloys. Mater Sci Eng B 176:187–203

    Article  CAS  Google Scholar 

  15. Mohanraj VJ, Chen Y (2006) Nanoparticles—a review. Tropical J Pharm Res 5:561–573

    Google Scholar 

  16. Solovev AY, Potekhina TS, Chernova IA, Basin BY (2007) Track membrane with immobilized colloid silver particles. Russian J Appl Chem 80:438–442

    Article  CAS  Google Scholar 

  17. Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BR (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: Characterization, nanofiltration, antifouling properties. Polym Adv Technol 18:562–568

    Article  Google Scholar 

  18. Gao Y, Jiang P, Liu DF, Yuan HJ, Yan XQ, Zhou ZP, Wang JX, Song L, Liu LF, Zhou WY, Wang G, Wang CY, Xie SS (2003) Synthesis, characterization and self-assembly of silver nanowires. Chem Phys Lett 380:146–149

    Article  CAS  Google Scholar 

  19. Graff A, Wagner D, Ditlbacher H, Kreibig U (2005) Silver nanowires. Eur Phys J D 34:263–269

    Article  CAS  Google Scholar 

  20. Chen C, Wang L, Li R, Jiang G, Yu H, Chen T (2007) Effect of silver nanowires on electrical conductance of system composed of silver particles. J Mater Sci 42:3172–3176

    Article  CAS  Google Scholar 

  21. Kim SH, Choi BS, Kang K, Choi Y, Yang SI (2007) Low temperature synthesis and growth mechanism of Ag nanowires. J Alloys Compounds 433:261–264

    Article  CAS  Google Scholar 

  22. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: The influence of size, shape, and dielectric, environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  23. Hou Y, Kondoh H, Ohta T, Gao S (2005) Size-controlled synthesis of nickel nanoparticles. Appl Surf Sci 241:218–222

    Article  CAS  Google Scholar 

  24. Akthakul A, Hochbaum AI, Stellacci F, Am M (2005) Size fractionation of metal nanoparticles by membrane filtration. Adv Mater 17–5:532–535

    Article  Google Scholar 

  25. Fu J, Yu S, Yin Y, Chao J (2012) Methods for separation, identification, characterization and quantification of silver nanoparticles. Trends Anal Chem 33:95–106

    Article  CAS  Google Scholar 

  26. Sweeney S, Woehrle G, Hutchison J (2006) Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chm Soc 128:3191–3197

    Article  Google Scholar 

  27. Jiang XC, Chen CY, Chen WM, Yu AB (2010) role of citric acid in the formation of silver nanoplates through a synergistic reduction approach. Langmuir 26(6):4400–4408

    Article  CAS  Google Scholar 

  28. Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951

    Article  CAS  Google Scholar 

  29. Rivas B, Pereira E, Palencia M, Sanchez J (2011) Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Progr Polym Sci 36:294–322

    Article  CAS  Google Scholar 

  30. Palencia M, Rivas B, Pereira E, Hernandez A, Pradanos P (2009) Study of polymer–metal ion–membrane interactions in liquid-phase polymer-based retention (LPR) by continuous diafiltration. J Membr Sci 336:128–139

    Article  CAS  Google Scholar 

  31. Valle H, Rivas BL, Aguilar MR, San Román J (2013) Preparation and characterization of hydrogel–nanosilver composites based on copolymers from sodium 2-acrylamido-2-methylpropanesulfonate. J Appl Polym Sci 129:537–548

    Article  CAS  Google Scholar 

  32. Zhang M, Zhang K, De Gusseme B, Verstrate W (2012) Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Res 46:2077–2087

    Article  CAS  Google Scholar 

  33. Li JH, Shao XS, Zhang QQ (2013) The double effects of silver nanoparticles on the PVDF membrane: surface hydrophilicity and antifouling performance. App Surf Sci 265:663–670

    Article  CAS  Google Scholar 

  34. Noble R, Stern S (1995) Membrane separations technology: Principle and applications. Elsevier, The Netherlands

    Google Scholar 

Download references

Acknowledgments

Manuel Palencia is grateful for the Postdoctoral Project FONDECYT No 3120009. The authors thank the FONDECYT (Grant No 1110079), PIA (Anillo ACT-130), and REDOC (MINEDUC project UCO1202 at U. de Concepción) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernabé L. Rivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palencia, M., Córdoba, A. & Rivas, B.L. Concentration–polarization effect of poly(sodium styrene sulfonate) on size distribution of colloidal silver nanoparticles during diafiltration experiments. Colloid Polym Sci 292, 619–626 (2014). https://doi.org/10.1007/s00396-013-3096-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3096-5

Keywords

Navigation