Colloid and Polymer Science

, Volume 291, Issue 12, pp 3005–3011 | Cite as

Enhancing the conductivity of isotactic polypropylene/polyethylene/carbon black composites by oscillatory shear

  • Shilin Huang
  • Zhengying Liu
  • Shaodi Zheng
  • Mingbo Yang
Short Communication


The influence of oscillatory shear on the conductivity of the isotactic polypropylene/polyethylene/carbon black composites is studied. It is found that the oscillatory shear under high strain amplitude can enhance the conductivity of the ternary composites with a HDPE/CB concentration in the percolation region. This is related to the fact that the high-strain oscillatory shear can improve the continuity of the conductive HDPE/CB phase in the composites. This finding has not been previously reported, and it may be used in industry to improve the conductivity of the ternary conductive composites with a low filler loading.


Conductivity Composite Rheology Shear Morphology 


  1. 1.
    Mahanandia P, Nanda KK (2012) Anisotropic electrical transport properties of poly(methyl methacrylate) infiltrated aligned carbon nanotube mats. Appl Phys Lett 100:022108CrossRefGoogle Scholar
  2. 2.
    Liu Q, Tu J, Wang X, Yu W, Zheng W, Zhao Z (2012) Electrical conductivity of carbon nanotube/poly(vinylidene fluoride) composites prepared by high-speed mechanical mixing. Carbon 50:339–341CrossRefGoogle Scholar
  3. 3.
    Filippone G, Salzano de Luna M, Acierno D, Russo P (2012) Elasticity and structure of weak graphite nanoplatelet (GNP) networks in polymer matrices through viscoelastic analyses. Polymer 53:2699–2704CrossRefGoogle Scholar
  4. 4.
    Al-Saleh MH, Sundararaj U (2010) Processing-microstructure-property relationship in conductive polymer nanocomposites. Polymer 51:2740–2747CrossRefGoogle Scholar
  5. 5.
    Yui H, Wu GZ, Sano H, Sumita M, Kino K (2006) Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene. Polymer 47:3599–3608CrossRefGoogle Scholar
  6. 6.
    Li Y, Shimizu H (2008) Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of continuous and nanodispersion structures. Macromolecules 41:5339–5344CrossRefGoogle Scholar
  7. 7.
    Gubbels F, Blacher S, Vanlathem E, Jerome R, Deltour R, Brouers F et al (1995) Design of electrical composites: determining the role of the morphology on the electrical properties of carbon black-filled polymer blends. Macromolecules 28:1559–1566CrossRefGoogle Scholar
  8. 8.
    Al-Saleh MH, Sundararaj U (2008) An innovative method to reduce percolation threshold of carbon black-filled immiscible polymer blends. Compos A: Appl Sci Manuf 39:284–293CrossRefGoogle Scholar
  9. 9.
    Bauhofer W, Schulz SC, Eken AE, Skipa T, Lellinger D, Alig I et al (2010) Shear-controlled electrical conductivity of carbon nanotubes networks suspended in low and high molecular weight liquids. Polymer 51:5024–5027CrossRefGoogle Scholar
  10. 10.
    Krueckel J, Stary Z, Triebel C, Schubert DW, Muenstedt H (2012) Conductivity of polymethylmethacrylate filled with carbon black or carbon fibres under oscillatory shear. Polymer 53:395–402CrossRefGoogle Scholar
  11. 11.
    Schulz SC, Bauhofer W (2010) Shear influenced network dynamics and electrical conductivity recovery in carbon nanotube/epoxy suspensions. Polymer 51:5500–5505CrossRefGoogle Scholar
  12. 12.
    Skipa T, Lellinger D, Böhm W, Saphiannikova M, Alig I (2010) Influence of shear deformation on carbon nanotube networks in polycarbonate melts: interplay between build up and destruction of agglomerates. Polymer 51:201–210CrossRefGoogle Scholar
  13. 13.
    Zeiler R, Handge UA, Dijkstra DJ, Meyer H, Altstaedt V (2011) Influence of molar mass and temperature on the dynamics of network formation in polycarbonate/carbon nanotubes composites in oscillatory shear flows. Polymer 52:430–442CrossRefGoogle Scholar
  14. 14.
    Krückel J, Starý Z, Schubert DW (2013) Oscillations of the electrical resistance induced by shear deformation in molten carbon black composites. Polymer 54:1106–1113CrossRefGoogle Scholar
  15. 15.
    Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271CrossRefGoogle Scholar
  16. 16.
    Chao-Lu Y, Zheng-Ying L, Yong-Juan G, Ming-Bo Y (2012) Effect of compounding procedure on morphology and crystallization behavior of isotactic polypropylene/high-density polyethylene/carbon black ternary composites. Polym Adv Technol 23:1112–1120CrossRefGoogle Scholar
  17. 17.
    Gao Y, Liu Z, Yin C, Huang S, Yang M (2012) Preparing iPP/HDPE/CB functionally gradient materials: influence factors of components and processing. Polym Adv Technol 23:695–701CrossRefGoogle Scholar
  18. 18.
    Shen J, Chen X, Huang W (2003) Structure and electrical properties of grafted polypropylene/graphite nanocomposites prepared by solution intercalation. J Appl Polym Sci 88:1864–1869CrossRefGoogle Scholar
  19. 19.
    Pötschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42:965–969CrossRefGoogle Scholar
  20. 20.
    Huang S, Liu Z, Yin C, Wang Y, Gao Y, Yang M (2011) A dynamic study on nonlinear viscoelastic behavior of isotactic polypropylene/carbon black composite melts. Colloid Polym Sci 289:1927–1931CrossRefGoogle Scholar
  21. 21.
    Huang S, Liu Z, Yin C, Wang Y, Gao Y, Chen C et al (2011) Enhancement effect of filler network on isotactic polypropylene/carbon black composite melts. Colloid Polym Sci 289:1673–1681CrossRefGoogle Scholar
  22. 22.
    Zhang C, Wang P, Ma CA, Wu GZ, Sumita M (2006) Temperature and time dependence of conductive network formation: dynamic percolation and percolation time. Polymer 47:466–473CrossRefGoogle Scholar
  23. 23.
    Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270:134–139CrossRefGoogle Scholar
  24. 24.
    Sundararaj U, Macosko CW (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657CrossRefGoogle Scholar
  25. 25.
    Grizzuti N, Bifulco O (1997) Effects of coalescence and breakup on the steady-state morphology of an immiscible polymer blend in shear flow. Rheol Acta 36:406–415Google Scholar
  26. 26.
    Ibar JP (1998) Control of polymer properties by melt vibration technology—a review. Polym Eng Sci 38:1–20CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shilin Huang
    • 1
  • Zhengying Liu
    • 1
  • Shaodi Zheng
    • 1
  • Mingbo Yang
    • 1
  1. 1.College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations