Skip to main content

Lamellar phase formation in catanionic mixtures of hydrogenated and fluorinated surfactants: a comparative study

Abstract

The properties and phase behaviors of the catanionic mixtures consisting of tetradecyltrimetylammonium bromide (TTABr) and different anionic surfactants (i.e., sodium docanoate, C10HOONa; sodium laurate, C12HOONa; sodium perfluorodecanoate, C10FOONa) were examined, in particular when the molar mixing ratio in the aqueous solution was exactly 1:1. Although the three inspected systems have identical head groups and counterions, they exhibited very different lamellar (Lα) phases. When using the hydrogenated surfactants, the C10HOONa–TTABr system formed domain-like Lα/L1 two phases and the C12HOONa–TTABr system formed cream-like Lα/L1 two phases, respectively. In the case of the perfluorinated surfactant, the C10FOONa–TTABr system formed interdigitated and tilted Lα gel. The microstructures of the three Lα phases were characterized by polarized microscope, freeze-fracture transmission electron microscope, small angle X-ray scattering, and X-ray diffraction. The phase transition of the lamellar gel at different temperature was studied by differential scanning calorimetry and rheological measurements. The results elucidated the formation of the Lα phase in catanionic mixtures containing hydrogenated or fluorinated anionic surfactants with molar mixing ratio of 1:1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Hao J, Hoffmann H (2004) Self-assembled structures in excess and salt-free catanionic surfactant solutions. Curr Opin Colloid Interface Sci 9:279–293

    CAS  Article  Google Scholar 

  2. 2.

    Zemb T, Dubois M, Demé B, Gulik-Krzywicki T (1999) Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 283:816–819

    CAS  Article  Google Scholar 

  3. 3.

    Dubois M, Demé B, Gulik-Krzywicki T, Dediu JC, Vautrin C, Désert S, Perez E, Zemb T (2001) Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 411:672–675

    CAS  Article  Google Scholar 

  4. 4.

    Horbaschek K, Hoffmann H, Hao J (2000) Classic Lα phases as opposed to vesicle phases in cationic−anionic surfactant mixtures. J Phys Chem B 104:2781–2784

    CAS  Article  Google Scholar 

  5. 5.

    Caillet C, Hebrant M, Tondre C (2000) Sodium octyl sulfate/cetyltrimethylammonium bromide catanionic vesicles: aggregate composition and probe encapsulation. Langmuir 16:9099–9102

    CAS  Article  Google Scholar 

  6. 6.

    Fischer A, Hebrant M, Tondre C (2002) Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system. J Colloid Interface Sci 248:163–168

    CAS  Article  Google Scholar 

  7. 7.

    Kaler EW, Herrington KL, Murthy AK, Zasadzinski J (1992) Phase behavior and structures of mixtures of anionic and cationic surfactants. J Phys Chem 96:6698–6707

    CAS  Article  Google Scholar 

  8. 8.

    Huang JB, Zhao GX (1995) Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant. Colloid Polym Sci 273:156–164

    CAS  Article  Google Scholar 

  9. 9.

    Talhout R, Engberts BFN (1997) Self-assembly in mixtures of sodium alkyl sulfates and alkyltrimethylammonium bromides: aggregation behavior and catalytic properties. Langmuir 13:5001–5006

    CAS  Article  Google Scholar 

  10. 10.

    Marques EF, Regev O, Khan A, Miguel MD, Lindman B (1998) Vesicle formation and general phase behavior in the catanionic mixture SDS−DDAB−water. The anionic-rich side. J Phys Chem B 102:6746–6758

    CAS  Article  Google Scholar 

  11. 11.

    Gradzielski M (2003) Vesicles and vesicle gels—structure and dynamics of formation. J Phys Condens Matter 15:R655–R697

    CAS  Article  Google Scholar 

  12. 12.

    St S, Gräbner D, Gradzielski M, Narayanan T (2002) Millisecond-range time-resolved small-angle X-ray scattering studies of micellar transformations. Phys Rev Lett 88:258301–258304

    Article  Google Scholar 

  13. 13.

    Kissa E (1994) Fluorinated surfactants; Surface science series, vol 50. Marcel Dekker, New York

    Google Scholar 

  14. 14.

    Fletcher PDI (1998) In: I.D. Robb (ed) Specialist surfactants. Blackie: Academic and Professional, London, p. 104

  15. 15.

    Monduzzi M (1998) Self-assembly in fluorocarbon surfactant systems. Curr Opin Colloid Interface Sci 3:467–477

    CAS  Article  Google Scholar 

  16. 16.

    Hoffmann H, Würtz J (1997) Unusual phenomena in perfluorosurfactants. J Mol Liq 72:191–230

    CAS  Article  Google Scholar 

  17. 17.

    Wang K, Karlsson G, Almgren M, Asakawa T (1999) Aggregation behavior of cationic fluorosurfactants in water and salt solutions. A CryoTEM survey. J Phys Chem B 103:9237–9246

    CAS  Article  Google Scholar 

  18. 18.

    Kissa E (2001) Fluorinated surfactants and repellents. Marcel Dekker, New York

    Google Scholar 

  19. 19.

    Funasaki N (1993) Mixed surfactant systems, Surfactant science series. Marcel Dekker, New York

    Google Scholar 

  20. 20.

    Bin JL, Henzel N, Stebe MJ (2006) Mixed fluorinated–hydrogenated surfactant-based system: preparation of ordered mesoporous materials. J Colloid Interface Sci 302:643–650

    Article  Google Scholar 

  21. 21.

    Holland PM, Rubingh DN (eds) (1992) Mixed surfactant systems; ACS Symposium Series, vol. 501, Am. Chem. Soc., Washington, DC, chaps. 1, 2

  22. 22.

    Rosen MJ (1992) In: P.M. Holland, D.N. Rubingh (eds) Mixed surfactant systems. In Symp. Ser., vol. 501, Am. Chem. Soc., Washington, DC, pp. 316–326

  23. 23.

    Koehler RD, Raghavan SR, Kaler EW (2000) Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J Phys Chem B 104:11035–11044

    CAS  Article  Google Scholar 

  24. 24.

    Raghavan SR, Fritz G, Kaler EW (2002) Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 18:3797–3803

    CAS  Article  Google Scholar 

  25. 25.

    Regev O, Khan A (1996) Alkyl chain symmetry effects in mixed cationic–anionic surfactant systems. J Colloid Interface Sci 182:95–109

    CAS  Article  Google Scholar 

  26. 26.

    Edlund H, Sadaghiani A, Khan A (1997) Phase behavior and phase structure for catanionic surfactant mixtures: dodecyltrimethylammonium chloride−sodium nonanoate−water system. Langmuir 13:4953–4963

    CAS  Article  Google Scholar 

  27. 27.

    Blanco E, Olsson U (2009) Phase behavior of semifluorinated catanionic mixtures: head group dependence and spontaneous formation of vesicles. J Colloid Interface Sci 331:522–531

    CAS  Article  Google Scholar 

  28. 28.

    Wolf C, Bressel K, Drechsler M (2009) Comparison of vesicle formation in zwitanionic and catanionic mixtures of hydrocarbon and fluorocarbon surfactants: phase behavior and structural progression. Langmuir 25(19):11358–11366

    CAS  Article  Google Scholar 

  29. 29.

    Hoffmann H, Ulbricht W (1997) In structure–performance relationships in surfactants. Marcel Dekker, New York, p 285

    Google Scholar 

  30. 30.

    Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions: model systems for rheological research. Mol Phys 74:933–973

    CAS  Article  Google Scholar 

  31. 31.

    Kim WJ, Yang SM (2000) Effects of sodium salicylate on the microstructure of an aqueous micellar solution and its rheological responses. J Colloid Interface Sci 232:225–234

    CAS  Article  Google Scholar 

  32. 32.

    Shrestha R, Shrestha L, Aramaki K (2008) Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems. J Colloid Interface Sci 322:596–604

    CAS  Article  Google Scholar 

  33. 33.

    Song A, Hao J (2011) Highly viscous wormlike micellar phases formed from the mixed AOT/C14DMAO/H2O system. J Colloid Interface Sci 353:231–236

    CAS  Article  Google Scholar 

  34. 34.

    Hao J, Liu W, Xu G, Zheng L (2003) Vesicles from salt-free cationic and anionic surfactant solutions. Langmuir 19:10635–10640

    CAS  Article  Google Scholar 

  35. 35.

    Hao J, Hoffmann H, Horbaschek K (2000) A vesicle phase that is prepared by shear from a novel kinetically produced stacked Lα-phase. J Phys Chem B 104:10144–10153

    CAS  Article  Google Scholar 

  36. 36.

    Horbaschek K, Hoffmann H, Thunig C (1998) Formation and properties of lamellar phases in systems of cationic surfactants and hydroxy-naphthoate. J Colloid Interface Sci 206:439–456

    CAS  Article  Google Scholar 

  37. 37.

    Demé D, Dubois M, Zemb T (2002) Swelling of a lecithin lamellar phase induced by small carbohydrate solutes. Biophys J 82:215–225

    Article  Google Scholar 

  38. 38.

    Bohlin L, Fontell K (1978) Flow properties of lamellar liquid crystalline lipid–water systems. J Colloid Interface Sci 67:272–283

    CAS  Article  Google Scholar 

  39. 39.

    Li H, Hao J (2008) Phase behavior and rheological properties of a salt-free catanionic surfactant TTAOH/LA/H2O system. J Phys Chem B 112:10497–10508

    CAS  Article  Google Scholar 

  40. 40.

    Shen Y, Hao J, Hoffmann H (2007) Reversible phase transition between salt-free catanionic vesicles and high-salinity catanionic vesicles. Soft Matter 3:1407–1412

    CAS  Article  Google Scholar 

  41. 41.

    Sun W, Shen Y, Hao J (2011) Phase behavior and rheological properties of salt-free catanionic TTAOH/DA/H2O system in the presence of hydrophilic and hydrophobic salts. Langmuir 27(5):1675–1682

    CAS  Article  Google Scholar 

  42. 42.

    Shen Y, Hao J, Hoffmann H, Wu Z (2008) Reversible phase transition from vesicles to lamellar network structures triggered by chain melting. Soft Matter 4:805–810

    CAS  Article  Google Scholar 

  43. 43.

    Würtz J, Hoffmann H (1995) Vesicles from ethoxylated perfluorocarbon alcohols. J Colloid Interface Sci 175:304–317

    Article  Google Scholar 

  44. 44.

    Oda R, Huc I, Talmon Y (2000) Aggregation properties and mixing behavior of hydrocarbon, fluorocarbon, and hybrid hydrocarbon–fluorocarbon cationic dimeric surfactants. Langmuir 16:9759–9769

    CAS  Article  Google Scholar 

  45. 45.

    Pasc-Banu A, Rico-Lattes I (2004) Microstructures in aqueous solutions of hybrid fluorocarbon/hydrocarbon catanionic surfactants. Colloids Surf A: Physicochem Eng Aspects 242:195–201

    CAS  Article  Google Scholar 

  46. 46.

    Ojogun V, Knutson BL (2009) Cationic–anionic vesicle templating from fluorocarbon/fluorocarbon and hydrocarbon/fluorocarbon surfactants. J Colloid Interface Sci 338:82–91

    CAS  Article  Google Scholar 

  47. 47.

    Riess JG (1994) Fluorinated vesicles. J Drug Target 2:455–468

    CAS  Article  Google Scholar 

  48. 48.

    Riess JG, Krafft MP (1995) Fluorinated phosphocholine-based amphiphiles as components of fluorocarbon emulsions and fluorinated vesicles. Chem Phys Lipids 75:1–14

    CAS  Article  Google Scholar 

  49. 49.

    Weiss TM, Narayanan T, Gradzielski M (2008) Dynamics of spontaneous vesicle formation in fluorocarbon and hydrocarbon surfactant mixtures. Langmuir 24:3759–3766

    CAS  Article  Google Scholar 

  50. 50.

    Bressel K, Prevost S, Gradzielski M (2011) Phase behaviour and structure of zwitanionic mixtures of perfluorocarboxylates and tetradecyldimethylamine oxide—dependence on chain length of the perfluoro surfactant. Soft Matter 7:11232–11242

    CAS  Article  Google Scholar 

  51. 51.

    Acharya DP, Sharma SC, Rodriguez-Abreu C, Aramaki K (2006) Viscoelastic micellar solutions in nonionic fluorinated surfactant systems. J Phys Chem B 110:20224–20234

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support by the National Natural Science Foundation of China (grant no. 31101600), the Natural Science Foundation of Shandong Province (grant no. ZR2011CQ043), and the Special Fund for “Taishan Scholar” construction engineering “agricultural nonpoint source pollution prevention and control” position.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jingcheng Hao or Li Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shen, Y., Hoffmann, H., Jiang, L. et al. Lamellar phase formation in catanionic mixtures of hydrogenated and fluorinated surfactants: a comparative study. Colloid Polym Sci 292, 67–75 (2014). https://doi.org/10.1007/s00396-013-3040-8

Download citation

Keywords

  • Lamellar phase
  • Catanionic surfactant
  • Fluorinated surfactant