Colloid and Polymer Science

, Volume 292, Issue 1, pp 33–50 | Cite as

Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies

  • Sónia O. Pereira
  • Ana Barros-Timmons
  • Tito TrindadeEmail author
Review Article


Bioapplications of gold nanoparticles (Au NPs) have received significant attention due to their sensitive optical characteristics which depend on particle size and shape, state of aggregation and to surrounding (bio)chemical environment. In this review, we present an overview of several methods to synthesise stable colloidal Au NPs with focus on the use of the electrostatic assembly method of polyelectrolytes (PE) to functionalise Au NPs. This versatile method allows adjusting the thickness, chemical functions and the surface charge of the shells surrounding the Au NPs, thus the relevance of these features for the bioapplications of Au NPs involving surface-mediated processes is discussed. Moreover, because the PE used can be functionalised with organic fluorophores, drugs or antibodies yielding multifunctional nanocomposites useful for those applications, this review also provides an overview of the electrostatic assembly of functionalised PE onto Au NPs and their bioapplications.


Gold colloids Polyelectrolytes Plasmonics Biofunctionalisation Bioapplications 



Branched poly(ethylenimine)




Deoxyribonucleic acid


(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride


Fluorescein isothiocyanate




Immunoglobulin G


Lissamine rhodamine B


Linear poly(ethyleneimine)


Mercaptoundecanoic acid








Poly(acrylic acid)


Poly(allylamine hydrochloride)


Phosphate-buffered saline


Polyelectrolyte chains per NPs


Poly(diallyldimethylammonium chloride)








Poly(styrenesulfonic acid sodium salt)


N-[3-(trimethoxysilyl)propyl] poly(ethylenimine)


Surface plasmon resonance


Small interfering RNA


Transmission electron microscopy



Sónia Pereira thanks Fundação para a Ciência e Tecnologia (FCT) for the grant SFRH/BD/80156/2011. CICECO acknowledges funding from FCT, FSE and POPH (Pest-C/CTM/LA0011/2011 project).


  1. 1.
    Trindade T, da Silva ALD (eds) (2011) Nanocomposite particles for bio-applications. Materials and bio-interfaces. Pan Stanford Publishing Pte. Ltd., Singapore. doi: 10.4032/9789814267816 Google Scholar
  2. 2.
    Vidotti M, Carvalhal RF, Mendes RK, Ferreira DCM, Kubota LT (2011) Biosensors based on gold nanostructures. J Braz Chem Soc 22(1):3–20Google Scholar
  3. 3.
    Yeh Y-C, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880. doi: 10.1039/C1NR11188D Google Scholar
  4. 4.
    Daniel-da-Silva AL, Fateixa S, Guiomar AJ, Costa BFO, Silva NJO, Trindade T, Goodfellow BJ, Gil AM (2009) Biofunctionalized magnetic hydrogel nanospheres of magnetite and kappa-carrageenan. Nanotechnology 20 (35). doi:10.1088/0957-4484/20/35/355602.Google Scholar
  5. 5.
    Martins MA, Neves MC, Esteves ACC, Girginova PI, Guiomar AJ, Amaral VS, Trindade T (2007) Biofunctionalized ferromagnetic CoPt3/polymer nanocomposites. Nanotechnology 18 (21). doi:10.1088/0957-4484/18/21/215609Google Scholar
  6. 6.
    Thanh NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5(3):213–230. doi: 10.1016/j.nantod.2010.05.003 Google Scholar
  7. 7.
    Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol Med 8(2):147–166. doi: 10.1016/j.nano.2011.05.016 Google Scholar
  8. 8.
    Tiwari P, Vig K, Dennis V, Singh S (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1(1):31–63. doi: 10.3390/nano1010031 Google Scholar
  9. 9.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779. doi: 10.1039/c1cs15237h Google Scholar
  10. 10.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782. doi: 10.1039/b806051g Google Scholar
  11. 11.
    Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assuncao M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors 12(2):1657–1687. doi: 10.3390/s120201657 Google Scholar
  12. 12.
    Liz-Marzán LM (2004) Nanometals: Formation and color. Mater Today 7(2):26–31. doi: 10.1016/S1369-7021(04)00080-X Google Scholar
  13. 13.
    Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779. doi: 10.1021/cr2001178 Google Scholar
  14. 14.
    Martins MA, Fateixa S, Girao AV, Pereira SS, Trindade T (2010) Shaping gold nanocomposites with tunable optical properties. Langmuir 26(13):11407–11412. doi: 10.1021/la100875j Google Scholar
  15. 15.
    Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253(11–12):1607–1618. doi: 10.1016/j.ccr.2009.01.005 Google Scholar
  16. 16.
    Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251. doi: 10.1016/j.nantod.2009.04.001 Google Scholar
  17. 17.
    Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim. doi: 10.1002/3527600248 Google Scholar
  18. 18.
    Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel F, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89 (20). doi:10.1103/PhysRevLett.89.203002Google Scholar
  19. 19.
    Gueroui Z, Libchaber A (2004) Single-molecule measurements of gold-quenched quantum dots. Phys Rev Lett 93 (16). doi:10.1103/PhysRevLett.93.166108Google Scholar
  20. 20.
    Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF (2005) Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 127(9):3115–3119. doi: 10.1021/ja043940i Google Scholar
  21. 21.
    Jennings TL, Singh MP, Strouse GF (2006) Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity. J Am Chem Soc 128(16):5462–5467. doi: 10.1021/ja0583665 Google Scholar
  22. 22.
    Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem Int Ed 45(28):4562–4588. doi: 10.1002/anie.200503873 Google Scholar
  23. 23.
    Ray P, Darbha G, Ray A, Walker J, Hardy W (2007) Gold nanoparticle based FRET for DNA detection. Plasmonics 2(4):173–183. doi: 10.1007/s11468-007-9036-9 Google Scholar
  24. 24.
    Kato N, Caruso F (2005) Homogeneous, competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte coated latex particles. J Phys Chem B 109(42):19604–19612. doi: 10.1021/jp052748f Google Scholar
  25. 25.
    Aslan K, Perez-Luna VH (2006) Nonradiative interactions between biotin-functionalized gold nanoparticles and fluorophore-labeled antibiotin. Plasmonics 1(2–4):111–119. doi: 10.1007/s11468-006-9013-8 Google Scholar
  26. 26.
    Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19(4):365–370. doi: 10.1038/86762 Google Scholar
  27. 27.
    Obliosca JM, Wang P-C, Tseng F-G (2012) Probing quenched dye fluorescence of Cy3-DNA-Au-nanoparticle hybrid conjugates using solution and array platforms. J Colloid Interface Sci 371:34–41. doi: 10.1016/j.jcis.2011.12.026 Google Scholar
  28. 28.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. doi: 10.1021/cr030698+ Google Scholar
  29. 29.
    Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion 32–33 Part 1:198–205. doi: 10.1016/0167-2738(89)90222-1 Google Scholar
  30. 30.
    Fievet F, Lagier JP, Figlarz M (1989) Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull 14(12):29–34Google Scholar
  31. 31.
    Gittins DI, Caruso F (2001) Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew Chem Int 40(16):3001–3004. doi: 10.1002/1521-3773(20010817)40:16<3001::aid-anie3001>;2-5 Google Scholar
  32. 32.
    Dumur F, Guerlin A, Dumas E, Bertin D, Gigmes D, Mayer CR (2011) Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull 44(2):119–137. doi: 10.1007/s13404-011-0018-5 Google Scholar
  33. 33.
    Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6(3):491–506. doi: 10.1007/s11468-011-9228-1 Google Scholar
  34. 34.
    Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18. doi: 10.1016/j.aca.2011.12.008 Google Scholar
  35. 35.
    Tran NTT, Wang T-H, Lin C-Y, Tsai Y-C, Lai C-H, Tai Y, Yung BYM (2011) Direct synthesis of rev peptide-conjugated gold nanoparticles and their application in cancer therapeutics. Bioconjugate Chem 22(7):1394–1401. doi: 10.1021/bc2001215 Google Scholar
  36. 36.
    Huang H, Yang X (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339(15):2627–2631. doi: 10.1016/j.carres.2004.08.005 Google Scholar
  37. 37.
    Newman JDS, Blanchard GJ (2006) Formation of gold nanoparticles using amine reducing agents. Langmuir 22(13):5882–5887. doi: 10.1021/la060045z Google Scholar
  38. 38.
    Sun X, Dong S, Wang E (2006) One-step polyelectrolyte-based route to well-dispersed gold nanoparticles: synthesis and insight. Mater Chem Phys 96(1):29–33. doi: 10.1016/j.matchemphys.2005.06.046 Google Scholar
  39. 39.
    Newman J, Blanchard G (2007) Formation and encapsulation of gold nanoparticles using a polymeric amine reducing agent. J Nanopart Res 9(5):861–868. doi: 10.1007/s11051-006-9145-y Google Scholar
  40. 40.
    Sardar R, Park J-W, Shumaker-Parry JS (2007) Polymer-induced synthesis of stable gold and silver nanoparticles and subsequent ligand exchange in water. Langmuir 23(23):11883–11889. doi: 10.1021/la702359g Google Scholar
  41. 41.
    Chen H, Wang Y, Wang Y, Dong S, Wang E (2006) One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer 47(2):763–766. doi: 10.1016/j.polymer.2005.11.034 Google Scholar
  42. 42.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi: 10.1039/DF9511100055 Google Scholar
  43. 43.
    Enustun BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85 (21):3317-&. doi: 10.1021/ja00904a001 Google Scholar
  44. 44.
    Bastús NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27(17):11098–11105. doi: 10.1021/la201938u Google Scholar
  45. 45.
    Ziegler C, Eychmüller A (2011) Seeded growth synthesis of uniform gold nanoparticles with diameters of 15–300 nm. J Phys Chem C 115(11):4502–4506. doi: 10.1021/jp1106982 Google Scholar
  46. 46.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J Chem Soc-Chem Commun 7:801–802. doi: 10.1039/c39940000801 Google Scholar
  47. 47.
    Gandubert VJ, Lennox RB (2005) Assessment of 4-(dimethylamino)pyridine as a capping agent for gold nanoparticles. Langmuir 21(14):6532–6539. doi: 10.1021/la050195u Google Scholar
  48. 48.
    Cho JH, Caruso F (2005) Investigation of the interactions between ligand-stabilized gold nanoparticles and polyelectrolyte multilayer films. Chem Mater 17(17):4547–4553. doi: 10.1021/cm050972b Google Scholar
  49. 49.
    Lohse SE, Dahl JA, Hutchison JE (2010) Direct synthesis of large water-soluble functionalized gold nanoparticles using bunte salts as ligand precursors. Langmuir 26(10):7504–7511. doi: 10.1021/la904306a Google Scholar
  50. 50.
    Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114. doi: 10.1126/science.282.5391.1111 Google Scholar
  51. 51.
    Mayya KS, Schoeler B, Caruso F (2003) Preparation and organization of nanoscale polyelectrolyte-coated gold nanoparticles. Adv Funct Mater 13(3):183–188. doi: 10.1002/adfm.200390028 Google Scholar
  52. 52.
    Dorris A, Rucareanu S, Reven L, Barrett CJ, Lennox RB (2008) Preparation and characterization of polyelectrolyte-coated gold nanoparticles. Langmuir 24(6):2532–2538. doi: 10.1021/la703003m Google Scholar
  53. 53.
    Gittins DI, Caruso F (2001) Tailoring the polyelectrolyte coating of metal nanoparticles. J Phys Chem B 105(29):6846–6852. doi: 10.1021/jp0111665 Google Scholar
  54. 54.
    Gittins DI, Caruso F (2000) Multilayered polymer nanocapsules derived from gold nanoparticle templates. Adv Mater 12(24):1947–1949. doi: 10.1002/1521-4095(200012)12:24<1947::aid-adma1947>;2-8 Google Scholar
  55. 55.
    Schneider G, Decher G (2004) From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano Lett 4(10):1833–1839. doi: 10.1021/nl0490826 Google Scholar
  56. 56.
    Schneider G, Decher G (2008) Functional core/shell nanoparticles via layer-by-layer assembly. Investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability. Langmuir 24(5):1778–1789. doi: 10.1021/la7021837 Google Scholar
  57. 57.
    Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int 37(16):2201–2205. doi: 10.1002/(sici)1521-3773(19980904)37:16<2201::aid-anie2201>;2-e Google Scholar
  58. 58.
    Caruso F (2000) Hollow capsule processing through colloidal templating and self-assembly. Chem Eur J 6(3):413–419. doi: 10.1002/(sici)1521-3765(20000204)6:3<413::aid-chem413>;2-9 Google Scholar
  59. 59.
    Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13 (1):11-+. doi: 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N Google Scholar
  60. 60.
    Mandal S, Bonifacio A, Zanuttin F, Sergo V, Krol S (2011) Synthesis and multidisciplinary characterization of polyelectrolyte multilayer-coated nanogold with improved stability toward aggregation. Colloid Polym Sci 289(3):269–280. doi: 10.1007/s00396-010-2343-2 Google Scholar
  61. 61.
    Djoumessi Lekeufack D, Brioude A, Lalatonne Y, Motte L, Coleman A, Miele P (2012) Reversible multi polyelectrolyte layers on gold nanoparticles. J Nanopart Res 14(6):1–7. doi: 10.1007/s11051-012-0941-2 Google Scholar
  62. 62.
    Wang Y, Angelatos AS, Caruso F (2007) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20(3):848–858. doi: 10.1021/cm7024813 Google Scholar
  63. 63.
    Wang X, He F, Tang F, Ma N, Li L (2011) Preparation of hybrid fluorescent-magnetic nanoparticles for application to cellular imaging by self-assembly. Colloids Surf, A 392(1):103–109. doi: 10.1016/j.colsurfa.2011.09.040 Google Scholar
  64. 64.
    Hong X, Li J, Wang MJ, Xu JJ, Guo W, Li JH, Bai YB, Li TJ (2004) Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater 16(21):4022–4027. doi: 10.1021/cm049422o Google Scholar
  65. 65.
    Wilson CG, Sisco PN, Gadala-Maria FA, Murphy CJ, Goldsmith EC (2009) Polyelectrolyte-coated gold nanorods and their interactions with type I collagen. Biomaterials 30(29):5639–5648. doi: 10.1016/j.biomaterials.2009.07.011 Google Scholar
  66. 66.
    Hauck TS, Ghazani AA, Chan WCW (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4(1):153–159. doi: 10.1002/smll.200700217 Google Scholar
  67. 67.
    Ma Z, Ding T (2009) Bioconjugates of glucose oxidase and gold nanorods based on electrostatic interaction with enhanced thermostability. Nanoscale Res Lett 4(10):1236–1240. doi: 10.1007/s11671-009-9385-8 Google Scholar
  68. 68.
    Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17(6):1325–1330. doi: 10.1021/cm048297d Google Scholar
  69. 69.
    Takahashi H, Niidome T, Kawano T, Yamada S, Niidome Y (2008) Surface modification of gold nanorods using layer-by-layer technique for cellular uptake. J Nanopart Res 10(1):221–228. doi: 10.1007/s11051-007-9227-5 Google Scholar
  70. 70.
    Huang H-C, Barua S, Kay DB, Rege K (2009) Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. ACS Nano 3(10):2941–2952. doi: 10.1021/nn900947a Google Scholar
  71. 71.
    Klesing J, Chernousova S, Epple M (2012) Freeze-dried cationic calcium phosphate nanorods as versatile carriers of nucleic acids (DNA, siRNA). J Mater Chem 22(1):199–204. doi: 10.1039/c1jm13502c Google Scholar
  72. 72.
    Chen B, Zhang H, Du N, Li D, Ma X, Yang D (2009) Hybrid nanostructures of Au nanocrystals and ZnO nanorods: layer-by-layer assembly and tunable blue-shift band gap emission. Mater Res Bull 44(4):889–892. doi: 10.1016/j.materresbull.2008.08.019 Google Scholar
  73. 73.
    Mayya KS, Gittins DI, Dibaj AM, Caruso F (2001) Nanotubes prepared by templating sacrificial nickel nanorods. Nano Lett 1(12):727–730. doi: 10.1021/nl015622c Google Scholar
  74. 74.
    Zhu H, Zhu E, Ou G, Gao L, Chen J (2010) Fe(3)O(4)-Au and Fe(2)O(3)-Au hybrid nanorods: layer-by-layer assembly synthesis and their magnetic and optical properties. Nanoscale Res Lett 5(11):1755–1761. doi: 10.1007/s11671-010-9706-y Google Scholar
  75. 75.
    Iamsamai C, Soottitantawat A, Ruktanonchai U, Hannongbua S, Dubas ST (2011) Simple method for the layer-by-layer surface modification of multiwall carbon nanotubes. Carbon 49(6):2039–2045. doi: 10.1016/j.carbon.2011.01.032 Google Scholar
  76. 76.
    Liang J, Li K, Gurzadyan GG, Lu X, Liu B (2012) Silver nanocube-enhanced far-red/near-infrared fluorescence of conjugated polyelectrolyte for cellular imaging. Langmuir 28(31):11302–11309. doi: 10.1021/la302511e Google Scholar
  77. 77.
    Schonhoff M (2003) Self-assembled polyelectrolyte multilayers. Curr Opin Colloid Interface Sci 8(1):86–95. doi: 10.1016/s1359-0294(03)00003-7 Google Scholar
  78. 78.
    Johnston APR, Cortez C, Angelatos AS, Caruso F (2006) Layer-by-layer engineered capsules and their applications. Curr Opin Colloid Interface Sci 11(4):203–209. doi: 10.1016/j.cocis.2006.05.001 Google Scholar
  79. 79.
    del Mercato LL, Rivera-Gil P, Abbasi AZ, Ochs M, Ganas C, Zins I, Sonnichsen C, Parak WJ (2010) LbL multilayer capsules: recent progress and future outlook for their use in life sciences. Nanoscale 2(4):458–467. doi: 10.1039/b9nr00341j Google Scholar
  80. 80.
    Vergaro V, Scarlino F, Bellomo C, Rinaldi R, Vergara D, Maffia M, Baldassarre F, Giannelli G, Zhang X, Lvov YM, Leporatti S (2011) Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Adv Drug Delivery Rev 63(9):847–864. doi: 10.1016/j.addr.2011.05.007 Google Scholar
  81. 81.
    Tan WB, Zhang Y (2005) Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J Biomed Mater Res Part A 75A(1):56–62. doi: 10.1002/jbm.a.30410 Google Scholar
  82. 82.
    Caruso F, Schuler C (2000) Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity. Langmuir 16(24):9595–9603. doi: 10.1021/la000942h Google Scholar
  83. 83.
    Zhao E, Zhao Z, Wang J, Yang C, Chen C, Gao L, Feng Q, Hou W, Gao M, Zhang Q (2012) Surface engineering of gold nanoparticles for in vitro siRNA delivery. Nanoscale 4(16):5102–5109Google Scholar
  84. 84.
    Elbakry A, Zaky A, Liebl R, Rachel R, Goepferich A, Breunig M (2009) Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett 9(5):2059–2064. doi: 10.1021/nl9003865 Google Scholar
  85. 85.
    Lee SK, Han MS, Asokan S, Tung C-H (2011) Effective gene silencing by multilayered siRNA-coated gold nanoparticles. Small 7(3):364–370. doi: 10.1002/smll.201001314 Google Scholar
  86. 86.
    Labouta HI, Schneider M (2010) Tailor-made biofunctionalized nanoparticles using layer-by-layer technology. Int J Pharm 395(1–2):236–242. doi: 10.1016/j.ijpharm.2010.05.019 Google Scholar
  87. 87.
    Schneider G, Subr V, Ulbrich K, Decher G (2009) Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy. Nano Lett 9(2):636–642. doi: 10.1021/nl802990w Google Scholar
  88. 88.
    Reum N, Fink-Straube C, Klein T, Hartmann RW, Lehr CM, Schneider M (2010) Multilayer coating of gold nanoparticles with drug–polymer coadsorbates. Langmuir 26(22):16901–16908. doi: 10.1021/la103109b Google Scholar
  89. 89.
    Schneider G, Decher G, Nerambourg N, Praho R, Werts MHV, Blanchard-Desce M (2006) Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett 6(3):530–536. doi: 10.1021/nl052441s Google Scholar
  90. 90.
    Masereel B, Dinguizli M, Bouzin C, Moniotte N, Feron O, Gallez B, Vander Borght T, Michiels C, Lucas S (2011) Antibody immobilization on gold nanoparticles coated layer-by-layer with polyelectrolytes. J Nanopart Res 13(4):1573–1580. doi: 10.1007/s11051-010-9908-3 Google Scholar
  91. 91.
    Guo S, Huang Y, Jiang Q, Sun Y, Deng L, Liang Z, Du Q, Xing J, Zhao Y, Wang PC, Dong A, Liang X-J (2010) Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4(9):5505–5511. doi: 10.1021/nn101638u Google Scholar
  92. 92.
    Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Elsevier, RockfordGoogle Scholar
  93. 93.
    Aslan K, Luhrs CC, Perez-Luna VH (2004) Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin. J Phys Chem B 108(40):15631–15639. doi: 10.1021/jp036089n Google Scholar
  94. 94.
    Aslan K, Perez-Luna VH (2004) Quenched emission of fluorescence by ligand functionalized gold nanoparticles. J Fluoresc 14(4):401–405. doi: 10.1023/B:JOFL.0000031821.74706.ea Google Scholar
  95. 95.
    Wang G, Wang Y, Chen L, Choo J (2010) Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron 25(8):1859–1868. doi: 10.1016/j.bios.2009.11.012 Google Scholar
  96. 96.
    Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37(9):2028–2045. doi: 10.1039/B712179M Google Scholar
  97. 97.
    Zanoli L, D’Agata R, Spoto G (2012) Functionalized gold nanoparticles for ultrasensitive DNA detection. Anal Bioanal Chem 402(5):1759–1771. doi: 10.1007/s00216-011-5318-3 Google Scholar
  98. 98.
    Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125(27):8102–8103. doi: 10.1021/ja034876s Google Scholar
  99. 99.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122(19):4640–4650. doi: 10.1021/ja993825l Google Scholar
  100. 100.
    Kohut A, Voronov A, Peukert W (2005) Organization of functionalized gold nanoparticles by controlled protein interactions. Part Part Syst Char 22(5):329–335. doi: 10.1002/ppsc.200500986 Google Scholar
  101. 101.
    Li X, Jiang L, Zhan QQ, Qian J, He SL (2009) Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing. Colloids Surf, A 332(2–3):172–179. doi: 10.1016/j.colsurfa.2008.09.009 Google Scholar
  102. 102.
    Boyer C, Bousquet A, Rondolo J, Whittaker MR, Stenzel MH, Davis TP (2010) Glycopolymer decoration of gold nanoparticles using a LbL approach. Macromolecules 43(8):3775–3784. doi: 10.1021/ma100250x Google Scholar
  103. 103.
    Mandal S, Bakeine GJ, Krol S, Ferrari C, Clerici AM, Zonta C, Cansolino L, Ballarini F, Bortolussi S, Stella S, Protti N, Bruschi P, Altieri S (2011) Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications. Appl Radiat Isot 69(12):1692–1697. doi: 10.1016/j.apradiso.2011.05.002 Google Scholar
  104. 104.
    Decher G, Eckle M, Schmitt J, Struth B (1998) Layer-by-layer assembled multicomposite films. Curr Opin Colloid Interface Sci 3(1):32–39. doi: 10.1016/s1359-0294(98)80039-3 Google Scholar
  105. 105.
    Davis F, Higson SPJ (2005) Structured thin films as functional components within biosensors. Biosens Bioelectron 21(1):1–20. doi: 10.1016/j.bios.2004.10.001 Google Scholar
  106. 106.
    Ariga K, Hill JP, Ji QM (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9(19):2319–2340. doi: 10.1039/b700410a Google Scholar
  107. 107.
    Torrano AA, Pereira AS, Oliveira ON Jr, Barros-Timmons A (2013) Probing the interaction of oppositely charged gold nanoparticles with DPPG and DPPC Langmuir monolayers as cell membrane models. Colloids Surf B Biointerfaces 108:120–126. doi: 10.1016/j.colsurfb.2013.02.014 Google Scholar
  108. 108.
    Hutchings GJ, Brust M, Schmidbaur H (2008) Gold-an introductory perspective. Chem Soc Rev 37(9):1759–1765. doi: 10.1039/b810747p Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sónia O. Pereira
    • 1
  • Ana Barros-Timmons
    • 1
  • Tito Trindade
    • 1
    Email author
  1. 1.Department of Chemistry-CICECO Aveiro Institute of NanotechnologyUniversity of AveiroAveiroPortugal

Personalised recommendations