Skip to main content

Multiple-stimulus-responsive hydrogels of cationic surfactants and azoic salt mixtures


New hydrogels having high water content, ∼96 wt%, composed of cationic surfactants, alkyltrimethylammonium bromides (C n TAB, n = 12, 14, 16, and 18), and a small dye molecule, sodium azobzenzene 4,4′-dicarboxylic acid (AzoNa2), was firstly obtained. The three-dimensional network structures of hydrogels were determined by transmission electron microscopy images, scanning electron microscopy images, 1H nuclear magnetic resonance, and small-angle X-ray scattering measurements. The mechanism of hydrogel formation was also illustrated. The rheological data were obtained to investigate the mechanical strength of hydrogels, which were turned out to be strong mechanical strength (∼104 Pa) materials. We found that the strength of the hydrogel depends on the fiber density, which can be controlled by changing the proportion of the two compounds, concentration of surfactants, temperature, and the chain length of the surfactant. Interestingly, the hydrogels were found to have a multiple-stimulus response property. A reversible thermal, UV–vis, or a chemical response was investigated in the mixtures of cationic surfactants and azoic salt for the first time. These findings may find potential applications such as sensors, actuators, shape memories, and drug delivery systems, etc.

Transition between fibers and spherical micelles via photo-irradiation

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Terech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97:3133–3159

    Article  CAS  Google Scholar 

  2. 2.

    Estroff LA, Hamilton AD (2004) Water gelation by small organic molecules. Chem Rev 104:1201–1217

    Article  CAS  Google Scholar 

  3. 3.

    Fuhrhop JH, Helfrich W (1993) Fluid and solid fibers made of lipid molecular bilayers. Chem Rev 93:1565–1582

    Article  CAS  Google Scholar 

  4. 4.

    Trickett K, Eastoe J (2008) Surfactant-based gels. Adv Colloid Interface Sci 144:66–74

    Article  CAS  Google Scholar 

  5. 5.

    van Esch JH, Feringa BL (2000) New functional materials based on self-assembling organogels: from serendipity towards design. Angew Chem Int Ed 39:2263–2266

    Article  Google Scholar 

  6. 6.

    Gronwald O, Snip E, Shinkai S (2002) Gelators for organic liquids based on self-assembly: a new facet of supramolecular and combinatorial chemistry. Curr Opin Colloid Interface Sci 7:148–156

    Article  CAS  Google Scholar 

  7. 7.

    Sangeetha NM, Maitra U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34:821–836

    Article  CAS  Google Scholar 

  8. 8.

    George M, Weiss RG (2006) Molecular organogels soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res 39:489–497

    Article  CAS  Google Scholar 

  9. 9.

    Mackenzie JD, Bescher EP (2007) Chemical routes in the synthesis of nanomaterials using the sol–gel process. Acc Chem Res 40:810–818

    Article  CAS  Google Scholar 

  10. 10.

    Cai W, Wang G, Du P, Wang R, Jiang X, Li Z (2008) Foldamer organogels: a circular dichroism study of glucose-mediated dynamic helicity induction and amplification. J Am Chem Soc 130:13450–13459

    Article  CAS  Google Scholar 

  11. 11.

    Suzuki M, Yumoto M, Shirai H, Hanabusa K (2008) Supramolecular gels formed by amphiphilic low-molecular-weight gelators of Nα, Nε-diacyl-l-lysine derivatives. Chem Eur J 14:2133–2144

    Article  CAS  Google Scholar 

  12. 12.

    Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–1481

    Article  CAS  Google Scholar 

  13. 13.

    Cravotto G, Cintas P (2009) Molecular self-assembly and patterning induced by sound waves: the case of gelation. Chem Soc Rev 38:2684–2697

    Article  CAS  Google Scholar 

  14. 14.

    Suzuki M, Hanabusa K (2009) L-lysine-based low-molecular-weight gelators. Chem Soc Rev 38:967–975

    Article  CAS  Google Scholar 

  15. 15.

    Xue P, Lu R, Yang X, Zhao L, Xu F, Liu Y, Zhang H, Nomoto H, Takafuji M, Ihara H (2009) Self-assembly of a chiral lipid gelator controlled by solvent and speed of gelation. Chem Eur J 15:9824–9835

    Article  CAS  Google Scholar 

  16. 16.

    Wang C, Zhang D, Zhu D (2005) A low-molecular-mass gelator with an electroactive tetrathiafulvalene group: tuning the gel formation by charge-transfer interaction and oxidation. J Am Chem Soc 127:16372–16373

    Article  CAS  Google Scholar 

  17. 17.

    Wang C, Sun F, Zhang D, Zhang G, Zhu D (2010) Cholesterol-substituted tetrathiafulvalene (TTF) compound: formation of organogel and supramolecular chirality. Chin J Chem 28:622–626

    Article  CAS  Google Scholar 

  18. 18.

    Jeppesen JO, Perkins J, Becher J, Stoddart JF (2001) Slow shuttling in an amphiphilic bistable [2]rotaxane incorporating a tetrathiafulvalene unit. Angew Chem Int Ed 40:1216

    Article  CAS  Google Scholar 

  19. 19.

    Balzani V, Credi A, Mattersteig G, Matthews OA, Raymo FM, Stoddart JF, Venturi M, White AJP, Williams DJ (2000) Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs. J Org Chem 65:1924–1936

    Article  CAS  Google Scholar 

  20. 20.

    Zhao Y, Aprahamian I, Trabolsi A, Erina N, Stoddart JF (2008) Organogel formation by a cholesterol-stoppered bistable [2]rotaxane and its dumbbell precursor. J Am Chem Soc 130:6348–6350

    Article  CAS  Google Scholar 

  21. 21.

    Wang C, Chen Q, Sun F, Zhang D, Zhang G, Huang Y, Zhao R, Zhu D (2010) Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups: reversible tuning of the gel–sol transition by redox reactions and light irradiation. J Am Chem Soc 132:3092–3096

    Article  CAS  Google Scholar 

  22. 22.

    Kitamura T, Nakaso S, Mizoshita N, Tochigi Y, Shimomura T, Moriyama M, Ito K, Kato T (2005) Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators. J Am Chem Soc 127:14769–14775

    Article  CAS  Google Scholar 

  23. 23.

    Kitahara T, Shirakawa M, Kawano S, Beginn U, Fujita N, Shinkai S (2005) Creation of a mixed-valence state from one-dimensionally aligned TTF utilizing the self-assembling nature of a low molecular-weight gel. J Am Chem Soc 127:14980–14981

    Article  CAS  Google Scholar 

  24. 24.

    Puigmarti-Luis J, Laukhina EE, Laukhin VN, del Pino AP, Mestres N, Vidal-Gancedo J, Rovira C, Amabilino DB (2009) Rich phase behavior in a supramolecular conducting material derived from an organogelator. Adv Funct Mater 19:934–941

    Article  CAS  Google Scholar 

  25. 25.

    Puigmarti-Luis J, Laukhin V, del Pino AP, Vidal-Gancedo J, Rovira C, Laukhina E, Amabilino DB (2006) Supramolecular conducting nanowires from organogels. Angew Chem Int Ed 46:238–241

    Article  Google Scholar 

  26. 26.

    Akutagawa T, Kakiuchi K, Hasegawa T, Noro S, Nakamura T, Hasegawa H, Mashiko S, Becher J (2005) Molecularly assembled nanostructures of a redox-active organogelator. Angew Chem Int Ed 44:7283–7287

    Article  CAS  Google Scholar 

  27. 27.

    Liu J, He P, Yan J, Fang X, Peng J, Liu K, Fang Y (2008) An organometallic super-gelator with multiple-stimulus responsive properties. Adv Mater 20:2508

    Article  CAS  Google Scholar 

  28. 28.

    Kawano S, Fujita N, Shinkai S (2004) A coordination gelator that shows a reversible chromatic change and sol–gel phase-transition behavior upon oxidative/reductive stimuli. J Am Chem Soc 126:8592–8593

    Article  CAS  Google Scholar 

  29. 29.

    Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M (2004) Control of viscoelasticity using redox reaction. J Am Chem Soc 126:12282–12283

    Article  CAS  Google Scholar 

  30. 30.

    Koumura N, Kudo M, Tamaoki N (2004) Photocontrolled gel-to-sol-to-gel phase transitioning of meta-substituted azobenzene bisurethanes through the breaking and reforming of hydrogen bonds. Langmuir 20:9897–9900

    Article  CAS  Google Scholar 

  31. 31.

    Yagai S, Iwashima T, Kishikawa K, Nakahara S, Karatsu T, Kitamura A (2006) Photoresponsive self-assembly and self-organization of hydrogen-bonded supramolecular tapes. Chem Eur J 12:3984–3994

    Article  CAS  Google Scholar 

  32. 32.

    Yagai S, Nakajima T, Kishikawa K, Kohmoto S, Karatsu T, Kitamura A (2005) Hierarchical organization of photoresponsive hydrogen-bonded rosettes. J Am Chem Soc 127:11134–11139

    Article  CAS  Google Scholar 

  33. 33.

    Kim JH, Seo M, Kim YJ, Kim SY (2009) Rapid and reversible gel–sol transition of self-assembled gels induced by photoisomerization of dendritic azobenzenes. Langmuir 25:1761–1766

    Article  CAS  Google Scholar 

  34. 34.

    Ji Y, Kuang G, Jia X, Chen E, Wang B, Li W, Wei Y, Lei J (2007) Photoreversible dendritic organogel. Chem Commun 4233–4235

  35. 35.

    Moriyama M, Mizoshita N, Yokota T, Kishimoto K, Kato T (2003) Photoresponsive anisotropic soft solids: liquid-crystalline physical gels based on a chiral photochromic gelator. Adv Mater 15:1335–1338

    Article  CAS  Google Scholar 

  36. 36.

    Moriyama M, Mizoshita N, Kato T (2006) Novel low-molecular-weight gelators based on azobenzene containing L-amino acids. Bull Chem Soc Jpn 79:962–964

    Article  CAS  Google Scholar 

  37. 37.

    Miljanić S, Frkanec L, Meić Z, Žinić M (2005) Photoinduced gelation by stilbene oxalyl amide compounds. Langmuir 21:2754–2760

    Article  Google Scholar 

  38. 38.

    Miljanić S, Frkanec L, Meić Z, Žinić M (2006) Gelation ability of novel oxamide-based derivatives bearing a stilbene as a photo-responsive unit. Eur J Org Chem 1323–1334

  39. 39.

    Eastoe J, Sanchez-Dominguez M, Wyatt P, Heenan RK. A photo-responsive organogel. Chem Commun 2608–2609.

  40. 40.

    Kumar NSS, Varghese S, Narayan G, Das S (2006) Hierarchical self-assembly of donor-acceptor-substituted butadiene amphiphiles into photoresponsive vesicles and gels. Angew Chem Int Ed 45:6317–6321

    Article  CAS  Google Scholar 

  41. 41.

    Abe M, Kishida T, Fujita N, Sada K, Shinkai S (2003) Binary organogelators which show light and temperature responsiveness. Org Biomol Chem 1:2744–2747

    Article  Google Scholar 

  42. 42.

    Wang C, Zhang D, Xiang J, Zhu D (2007) New organogels based on an anthracene derivative with one urea group and its photodimer: fluorescence enhancement after gelation. Langmuir 23:9195–9200

    Article  CAS  Google Scholar 

  43. 43.

    Ahmed SA, Sallenave X, Fages F, Mieden-Gundert G, Müller WM, Müller U, Vögtle F, Pozzo JL (2002) Multiaddressable self-assembling organogelators based on 2H-chromene and N-Acyl-1, ω-amino acid units. Langmuir 18:7096–7101

    Article  CAS  Google Scholar 

  44. 44.

    Qiu Z, Yu H, Li J, Wang Y, Zhang Y (2009) Spiropyran-linked dipeptide forms supramolecular hydrogel with dual responses to light and to ligand–receptor interaction. Chem Commun 3342–3344

  45. 45.

    Chen Q, Feng Y, Zhang D, Zhang G, Fan Q, Sun S, Zhu D (2010) Light-triggered self-assembly of a spiropyran-functionalized dendron into nano-/micrometer-sized particles and photoresponsive organogel with switchable fluorescence. Adv Funct Mater 20:36–42

    Article  Google Scholar 

  46. 46.

    de Jong JJD, Lucas LN, Kellogg RM, van Esch JH, Feringa BL (2004) Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304:278–281

    Article  Google Scholar 

  47. 47.

    Wang S, Shen W, Feng YL, Tian H (2006) A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chem Commun 1497–1499

  48. 48.

    Ma M, Kuang Y, Gao Y, Zhang Y, Gao P, Xu B (2010) Aromatic–aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J Am Chem Soc 132:2719–2728

    Article  CAS  Google Scholar 

  49. 49.

    Gao Y, Kuang Y, Guo Z, Guo Z, Krauss IJ, Xu B (2009) Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J Am Chem Soc 131:13576–13577

    Article  CAS  Google Scholar 

  50. 50.

    Chen Q, Zhang D, Zhang G, Zhu D (2009) New cholesterol-based gelators with maleimide unit and the relevant Michael adducts: chemoresponsive organogels. Langmuir 25:11436–11441

    Article  CAS  Google Scholar 

  51. 51.

    George M, Weiss RG (2001) Chemically reversible organogels: aliphatic amines as “latent” gelators with carbon dioxide. J Am Chem Soc 123:10393–10394

    Article  CAS  Google Scholar 

  52. 52.

    Shirakawa M, Fujita N, Shinkai S (2003) [60]Fullerene-motivated organogel formation in a porphyrin derivative bearing programmed hydrogen-bonding sites. J Am Chem Soc 125:9902–9903

    Article  CAS  Google Scholar 

  53. 53.

    Yang J (2002) Viscoelastic wormlike micelles and their applications. Curr Opin Colloid Interface Sci 7:276–281

    Article  CAS  Google Scholar 

  54. 54.

    Gradzielski M, Bergmeier M, Muller M, Hoffmann H (1997) Novel gel phase: a cubic phase of densely packed monodisperse, unilamellar vesicles. J Phys Chem B 101:1719–1722

    Article  CAS  Google Scholar 

  55. 55.

    Gradzielski M, Muller M, Bergmeier M, Hoffmann H, Hoinkis E (1999) Structural and macroscopic characterization of a gel phase of densely packed monodisperse, unilamellar vesicles. J Phys Chem B 103:1416–1424

    Article  CAS  Google Scholar 

  56. 56.

    Li L, Yi Y, Dong J, Li X (2010) Azobenzene dye induced micelle to vesicle transition in cationic surfactant aqueous solutions. J Colloid Interface Sci 343:504–509

    Article  CAS  Google Scholar 

  57. 57.

    Oh H, Ketner AM, Heymann R, Kesselman E, Danino D, Falvey DE, Raghavan SR (2013) A simple route to fluid with photo-switchable viscosities based on a reversible transition between vesicles and wormlike micelles. Soft Matter 9:5025–5033

    Article  CAS  Google Scholar 

  58. 58.

    Matsumura A, Sakai K, Sakai H, Abe M (2011) Photoinduced increase in surfactant solution viscosity using azobenzene dicarboxylate for molecular switching. J Oleo Sci 60:203–207

    Article  CAS  Google Scholar 

  59. 59.

    Basit H, Pal A, Sen S, Bhattacharya S (2008) Two-component hydrogels comprising fatty acids and amines: structure, properties, and application as a template for the synthesis of metal nanoparticles. Chem Eur J 14:6534–6545

    Article  CAS  Google Scholar 

  60. 60.

    Simmons BA, Taylor CE, Landis FA, John VT, McPherson GL, Schwartz DK, Moore R (2001) Microstructure determination of AOT + phenol organogels utilizing small-angle X-ray scattering and atomic force microscopy. J Am Chem Soc 123:2414–2421

    Article  CAS  Google Scholar 

  61. 61.

    Stokes RJ, Evans DF (1997) Fundamentals of interfacial engineering. Wiley-VCH, New York

    Google Scholar 

Download references


This work was financially supported by the NSFC (grant no. 21033005 and 21273136), the National Basic Research Program of China (973 program, 2009CB930103).

Author information



Corresponding author

Correspondence to Jingcheng Hao.

Appendix A. Supplementary data

Below is the link to the electronic supplementary material.


Supporting material includes TEM images, SAXS data, SAXRD data, and photos of samples response to chemicals. Supplementary data associated with this article can be found in the online version (doi: ) (DOC 9261 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, D., Hao, J. Multiple-stimulus-responsive hydrogels of cationic surfactants and azoic salt mixtures. Colloid Polym Sci 291, 2935–2946 (2013).

Download citation


  • Phase behavior
  • Hydrogel
  • Multiple-stimulus response
  • Surfactant
  • Self-assembly