Colloid and Polymer Science

, Volume 291, Issue 12, pp 2927–2933 | Cite as

Particulate and continuum mechanics of microgel pastes: effect and non-effect of compositional heterogeneity

Original Contribution

Abstract

Microgels are deformable colloids that can be packed by external compression; such packing transforms a suspension of loose microgels into a viscoelastic paste with mechanical properties controlled by the elasticity of the constituent particles. We aim to understand how the presence of microgel particles with different individual elastic moduli affects this interplay in heterogeneous microgel packings. We do this by preparing microgel pastes that contain both soft, loosely cross-linked and stiff, densely cross-linked microgel particles and probe their shear elasticity. We consider particle packing fractions that cover the range from particles at the onset of contact to particles that are strongly packed, deformed, and deswollen to investigate the transition from a particulate suspension to a macrogel-type system. These studies reveal that the elasticity of heterogeneous microgel suspensions at low packing is due to the response of the soft, easily deformable microgel particles alone, whereas at high packing both soft and stiff microgels linearly add to the paste elasticity. This fundamental difference is due to the fundamentally different origin of elasticity at different microgel packing; whereas the soft particle interaction potential dominates the suspension mechanics at low microgel packing, rubber-like elasticity that equally reflects both soft and stiff contributions governs the mechanics of the same samples at high microgel packing.

Keywords

Elasticity Heterogeneity Mechanics Microgel Particulate Paste 

References

  1. 1.
    Funke W, Okay O, Joos-Muller B (1998) Microgels—intramolecularly crosslinked macromolecules with a globular structure. Adv Polym Sci 136:139–234CrossRefGoogle Scholar
  2. 2.
    Heyes DM, Branka AC (2009) Interactions between microgel particles. Soft Matter 5:2681–2685CrossRefGoogle Scholar
  3. 3.
    Fernandez-Nieves A, Fernandez-Barbero A, Vincent B, de las Nieves FJ (2003) Osmotic de-swelling of ionic microgel particles. J Chem Phys 119:10383–10388CrossRefGoogle Scholar
  4. 4.
    Le Grand A, Petekidis G (2008) Effects of particle softness on the rheology and yielding of colloidal glasses. Rheol Acta 4:579–590CrossRefGoogle Scholar
  5. 5.
    Senff H, Richtering W (1999) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J Chem Phys 111:1705–1711CrossRefGoogle Scholar
  6. 6.
    Seth JR, Cloitre M, Bonnecaze RT (2006) Elastic properties of soft particle pastes. J Rheol 50:353–376CrossRefGoogle Scholar
  7. 7.
    Menut P, Seiffert S, Sprakel J, Weitz DA (2012) Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter 8:156–164CrossRefGoogle Scholar
  8. 8.
    Cloitre M, Borrega R, Monti F, Leibler L (2003) Structure and flow of polyelectrolyte microgels: from suspensions to glasses. C R Physique 4:221–230CrossRefGoogle Scholar
  9. 9.
    Wyart M (2011) Elasticity of soft particles and colloids near the jamming threshold. In: Fernandez-Nieves A, Wyss HM, Mattsson J, Weitz DA (eds) Microgel suspensions: fundamentals and applications. Wiley, Berlin, pp 195–206CrossRefGoogle Scholar
  10. 10.
    Lietor-Santos J, Sierra-Martın B, Fernandez-Nieves A (2011) Bulk and shear moduli of compressed microgel suspensions. Phys Rev E Rap Comm 84:060402CrossRefGoogle Scholar
  11. 11.
    Di Lorenzo F, Seiffert S (2013) Macro- and microrheology of heterogeneous microgel packings. Macromolecules 46:1962–1972CrossRefGoogle Scholar
  12. 12.
    McPhee W, Tam KC, Pelton R (1993) Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. J Colloid Interface Sci 3:24–30CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Meeker SP, Bonnecaze RT, Cloitre M (2004) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48:1295–1320CrossRefGoogle Scholar
  15. 15.
    Seth JR, Cloitre M, Bonnecaze RT (2008) Influence of short-range forces on wall-slip in microgel pastes. J Rheol 52:1241–1268CrossRefGoogle Scholar
  16. 16.
    Paulin SE, Ackerson BJ, Wolfe MS (1996) Equilibrium and shear induced nonequilibrium phase behavior of PMMA microgel spheres. J Colloid Interface Sci 178:251–262CrossRefGoogle Scholar
  17. 17.
    Senff H, Richtering W, Nordhausen C, Weiss A, Ballauff M (1999) Rheology of a temperature sensitive core-shell latex. Langmuir 15:102–106CrossRefGoogle Scholar
  18. 18.
    Koumakis N, Pamvouxoglou A, Poulosa AS, Petekidis G (2012) Direct comparison of the rheology of model hard and soft particle glasses. Soft Matter 8:4271–4284CrossRefGoogle Scholar
  19. 19.
    Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. 20.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  21. 21.
    Stieger M, Richtering W, Pedersen JS, Lindner P (2004) Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids. J Chem Phys 120:6197–6206CrossRefGoogle Scholar
  22. 22.
    Deen GR, Alsted T, Richtering W, Pedersen GS (2011) Synthesis and characterization of nanogels of poly(N-isopropylacrylamide) by a combination of light and small-angle X-ray scattering. Phys Chem Chem Phys 13:3108–3114CrossRefGoogle Scholar
  23. 23.
    Scheffold F, Diaz-Leyva P, Reufer M, Braham NB, Lynch I, Harden JL (2010) Brushlike interactions between thermoresponsive microgel particles. Phys Rev Lett 104:128304CrossRefGoogle Scholar
  24. 24.
    Romeo G, Pica Ciamarra N (2013) Elasticity of compressed microgel suspensions. Soft Matter 9:5401–5406CrossRefGoogle Scholar
  25. 25.
    Lyon LA, Meng M, Singh N, Sorrell CD, St. John A (2009) Thermoresponsive microgel-based materials. Chem Soc Rev 38:865–874CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.F-ISFM Soft Matter and Functional MaterialsHelmholtz-Zentrum BerlinBerlinGermany
  2. 2.Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany

Personalised recommendations