Abstract
In this review, we survey recent literature (2009–2013) on hydrogels that are mechanically tough and adhesive. The impact of published work and trends in the field are examined. We focus on design concepts, new materials, structures related to mechanical performance and adhesion properties. Besides hydrogels made of individual polymers, concepts developed to toughen hydrogels include interpenetrating and double networks, slide ring polymer gels, topological hydrogels, ionically cross-linked copolymer gels, nanocomposite polymer hydrogels, self-assembled microcomposite hydrogels, and combinations thereof. Hydrogels that are adhesive in addition to tough are also discussed. Adhesive properties, especially wet adhesion of hydrogels, are rare but needed for a variety of general technologies. Some of the most promising industrial applications are found in the areas of sensor and actuator technology, microfluidics, drug delivery and biomedical devices. The most recent accomplishments and creative approaches to making tough and sticky hydrogels are highlighted. This review concludes with perspectives for future directions, challenges and opportunities in a continuously changing world.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Malmsten M (2011) Antimicrobial and antiviral hydrogels. Soft Matter 7:8725–8736
Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64:1007–1025
Messing R, Schmidt AM (2011) Perspectives for the mechanical manipulation of hybrid hydrogels. Polym Chem 2:18–32
Calvert P (2009) Hydrogels for soft machines. Adv Mater 21:743–756
D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, vol. 404, p. 588, Apr 6 2000.
Dong XL, Wu RA, Dong J, Wu MH, Zhu Y, Zou HF (2009) Recent progress of polar stationary phases in CEC and capillary liquid chromatography. Electrophoresis 30:141–154
Hempenius MA, Cirmi C, Lo Savio F, Song J, Vancso GJ (2010) Poly(ferrocenylsilane) gels and hydrogels with redox-controlled actuation. Macromol Rapid Commun 31:772–783
G. Y. Huang, L. H. Zhou, Q. C. Zhang, Y. M. Chen, W. Sun, F. Xu, and T. J. Lu, Microfluidic hydrogels for tissue engineering, Biofabrication, vol. 3, Mar 2011.
Allazetta S, Cosson S, Lutolf MP (2011) Programmable microfluidic patterning of protein gradients on hydrogels. Chem Commun 47:191–193
Schneider HJ, Kato K, Strongin RM (2007) Chemomechanical polymers as sensors and actuators for biological and medicinal applications. Sensors 7:1578–1611
Texter J (2009) Templating hydrogels. Colloid Polym Sci 287:313–321
Kuckling D (2009) Responsive hydrogel layers—from synthesis to applications. Colloid Polym Sci 287:881–891
Kim P, Zarzar LD, He XM, Grinthal A, Aizenberg J (2011) Hydrogel-actuated integrated responsive systems (HAIRS): moving towards adaptive materials. Curr Opin Solid State Mater Sci 15:236–245
Artzi N, Zeiger A, Boehning F, Ramos AB, van Vliet K, Edelman ER (2011) Tuning adhesion failure strength for tissue-specific applications. Acta Biomaterialia 7:67–74
Duarte AP, Coelho JF, Bordado JC, Cidade MT, Gil MH (2012) Surgical adhesives: systematic review of the main types and development forecast. Prog Polym Sci 37:1031–1050
A. Matsumoto, R. Yoshida, and K. Kataoka, Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH, Biomacromolecules, vol. 5, pp. 1038–1045, May–Jun 2004.
Thomas PC, Cipriano BH, Raghavan SR (2011) Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange. Soft Matter 7:8192–8197
Myung D, Farooqui N, Zheng LL, Koh W, Gupta S, Bakri A, Noolandi J, Cochran JR, Frank CW, Ta CN (2009) Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. J Biomed Mater Res Part A 90A:70–81
Huynh CT, Nguyen MK, Lee DS (2011) Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44:6629–6636
Petrie EM (2007) Theories of adhesion. In: Patrie EM (ed) Handbook of adhesives and sealants. McGraw-Hill, New York
Pizzi A, Mittal KL (1994) Handbook of adhesive technology. Marcel Dekker Inc., New York
Pocius AV (2002) Adhesion and adhesive technology. An introduction. Carl Hanser Verlag, Munich
Fitton MD, Broughton IG (2005) Variable modulus adhesives: an approach to optimised joint performance. Int J Adhes Adhes 25:329–336
Davies ML, Murphy SM, Hamilton CJ, Tighe BJ (1992) Polymer membranes in clinical sensor applications: 3. Hydrogels as reactive matrix membranes in fiber optic sensors. Biomaterials 13:991–999
Petersen S, Gattermayer M, Biesalski M (2011) Hold on at the right spot: bioactive surfaces for the design of live-cell micropatterns. Bioactive Surfaces 240:35–78
Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26:631–643
Park K, Shalaby SWS, Park H (1993) Biodegradable Hydrogels for Drug Delivery. Technomic Publishing, Lancaster, PA
S. Chaterji, I. K. Kwon, and K. Park, Smart polymeric gels: redefining the limits of biomedical devices, Progress in Polymer Science, vol. 32, pp. 1083–1122, Aug–Sep 2007.
Bird SP, Baker LA (2011) Biologically modified hydrogels for chemical and biochemical analysis. Analyst 136:3410–3418
Bait N, Grassl B, Derail C, Benaboura A (2011) Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 7:2025–2032
Peng HT, Shek PN (2010) Novel wound sealants: biomaterials and applications. Expert Rev Med Devices 7:639–659
Shazly TM, Baker AB, Naber JR, Bon A, Van Vliet KJ, Edelman ER (2010) Augmentation of postswelling surgical sealant potential of adhesive hydrogels. J Biomed Mater Res Part A 95A:1159–1169
Brubaker CE, Messersmith PB (2011) Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12:4326–4334
Dolgin E (2013) The sticking point. Nat Med 19:124–125
Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822
Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487
Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung UI (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384
Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201
K. Haraguchi and T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties, Advanced Materials, vol. 14, pp. 1120–1124, AUG 16 2002.
Schexnailder PJ, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11
Shibayama M (2012) Structure–mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038
Schexnailder P, Loizou E, Porcar L, Butler P, Schmidt G (2009) Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) cross-linked with silicate nanoparticles. Phys Chem Chem Phys 11:2760–2766
Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657
Kopecek J (2009) Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part a-Polym Chem 47:5929–5946
Fisher OZ, Khademhosseini A, Langer R, Peppas NA (2010) Bioinspired materials for controlling stem cell fate. Acc Chem Res 43:419–428
Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719
Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408
Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22
J. Patterson, M. M. Martino, and J. A. Hubbell, Biomimetic materials in tissue engineering, Materials Today, vol. 13, pp. 14–22, Jan–Feb 2010.
Stevens MM, Khademhosseini A (2010) Emerging materials for tissue engineering and regenerative medicine: themed issue for Soft Matter and Journal of Materials Chemistry. Soft Matter 6:4962–4962
Kloxin AM, Lewis KJR, DeForest CA, Seedorf G, Tibbitt MW, Balasubramaniam V, Anseth KS (2012) Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr Biol 4:1540–1549
Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158
Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590
Brown HR (2007) A model of the fracture of double network gels. Macromolecules 40:3815–3818
Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927
Y. Tanaka, A local damage model for anomalous high toughness of double-network gels, Epl, vol. 78, 2007.
L. Mullins and N. R. Tobin, Stress softening in rubber vulcanizates: I. Use of a strain amplification factor to describe elastic behavior of filler-reinforced vulcanized rubber, Journal of Applied Polymer Science, vol. 9, pp. 2993–, 1965.
Ito K (2012) Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym J 44:38–41
Tirumala VR, Tominaga T, Lee S, Butler PD, Lin EK, Gong JP, Wu WL (2008) Molecular model for toughening in double-network hydrogels. J Phys Chem B 112:8024–8031
Baumberger T, Caroli C, Martina D (2006) Solvent control of crack dynamics in a reversible hydrogel. Nat Mater 5:552–555
Okumura K (2004) Toughness of double elastic networks. Europhys Lett 67:470–476
Kishi R, Hiroki K, Tominaga T, Sano KI, Okuzaki H, Martinez JG, Otero TF, Osada Y (2012) Electro-conductive double-network hydrogels. J Polymer Sci, Part B: Polymer Phys 50:790–796
Cui J, Lackey MA, Madkour AE, Saffer EM, Griffin DM, Bhatia SR, Crosby AJ, Tew GN (2012) Synthetically simple, highly resilient hydrogels. Biomacromolecules 13:584–588
Cui J, Lackey MA, Tew GN, Crosby AJ (2012) Mechanical properties of end-linked PEG/PDMS hydrogels. Macromolecules 45:6104–6110
Zhang XY, Guo XL, Yang SG, Tan SX, Li XF, Dai HJ, Yu XL, Zhang XL, Weng N, Jian B, Xu J (2009) Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers. J Appl Polym Sci 112:3063–3070
Harrass K, Kruger R, Moller M, Albrecht K, Groll J (2013) Mechanically strong hydrogels with reversible behaviour under cyclic compression with MPa loading. Soft Matter 9:2869–2877
Rakovsky A, Marbach D, Lotan N, Lanir Y (2009) Poly(ethylene glycol)-based hydrogels as cartilage substitutes: synthesis and mechanical characteristics. J Appl Polym Sci 112:390–401
Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A (2009) Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng Part A 15:1645–1653
Liu YX, Chan-Park MB (2009) Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30:196–207
DeKosky BJ, Dormer NH, Ingavle GC, Roatch CH, Lomakin J, Detamore MS, Gehrke SH (2010) Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng Part C-Methods 16:1533–1542
Chan BK, Wippich CC, Wu CJ, Sivasankar PM, Schmidt G (2012) Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds. Macromol Biosci 12:1490–1501
Wang XZ, Wang HL, Brown HR (2011) Jellyfish gel and its hybrid hydrogels with high mechanical strength. Soft Matter 7:211–219
Shull KR (2012) Materials science: a hard concept in soft matter. Nature 489:36–37
Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489:133–136
Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005
P. Manandhar, P. D. Calvert, and J. R. Buck, Elastomeric ionic hydrogel sensor for large strains, IEEE Sensors Journal, vol. 12, Jun 2012.
Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343
Lin HR, Ling MH, Lin YJ (2009) High strength and low friction of a PAA–alginate–silica hydrogel as potential material for artificial soft tissues. J Biomater Sci Polym Ed 20:637–652
D. W. Thompson and J. T. Butterworth, The nature of laponite and its aqueous dispersions, Journal of Colloid and Interface Science, vol. 151, pp. 236–243, JUN 1992.
H. Tanaka, S. Jabbari-Farouji, J. Meunier, and D. Bonn, Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: Aging and gelation, Physical Review E, vol. 71, Feb 2005.
H. Tanaka, J. Meunier, and D. Bonn, Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels, Physical Review E, vol. 69, Mar 2004.
Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241
T. Nishida, H. Endo, N. Osaka, H. Li, K. Haraguchi, and M. Shibayama, Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering, Physical Review E, vol. 80, Sep 2009.
Ren HY, Zhu MF, Haraguchi K (2012) Effects of counter ions of clay platelets on the swelling behavior of nanocomposite gels. J Colloid Interface Sci 375:134–141
H. Furukawa, K. Horie, R. Nozaki, and M. Okada, Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering, Physical Review E, vol. 68, Sep 2003.
Wu CJ, Gaharwar AK, Chan BK, Schmidt G (2011) Mechanically tough pluronic F127/Laponite nanocomposite hydrogels from covalently and physically cross-linked Networks. Macromolecules 44:8215–8224
Gaharwar AK, Rivera CP, Wu CJ, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148
Wu C-J, Wilker JJ, Schmidt G (2013) Robust and adhesive hydrogels from cross-linked poly(ethylene glycol) and silicate for biomedical use. Macromol Biosci 13:59–66
Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G (2011) Highly Extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650
Lin WC, Marcellan A, Hourdet D, Creton C (2011) Effect of polymer–particle interaction on the fracture toughness of silica filled hydrogels. Soft Matter 7:6578–6582
G. J. Lake and A. G. Thomas, Strength of highly elastic materials, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 300, pp. 108–, 1967.
Wang Q, Hou RX, Cheng YJ, Fu J (2012) Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter 8:6048–6056
Liu JQ, Chen CF, He CC, Zhao L, Yang XJ, Wang HL (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6:8194–8202
Qin XP, Zhao F, Liu YK, Wang HY, Feng SY (2009) High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents. Colloid Polym Sci 287:621–625
T. Huang, H. G. Xu, K. X. Jiao, L. P. Zhu, H. R. Brown, and H. L. Wang, A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel, Advanced Materials, vol. 19, pp. 1622–, Jun 18 2007.
Xia LW, Ju XJ, Liu JJ, Xie R, Chu LY (2010) Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks. J Colloid Interface Sci 349:106–113
Xu K, Tan Y, Chen Q, An HY, Li WB, Dong LS, Wang PX (2010) A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. J Colloid Interface Sci 345:360–368
Hu J, Kurokawa T, Hiwatashi K, Nakajima T, Wu ZL, Liang SM, Gong JP (2012) Structure optimization and mechanical model for microgel-reinforced hydrogels with high strength and toughness. Macromolecules 45:5218–5228
Meid J, Dierkes F, Cui J, Messing R, Crosby AJ, Schmidt A, Richtering W (2012) Mechanical properties of temperature sensitive microgel/polyacrylamide composite hydrogels-from soft to hard fillers. Soft Matter 8:4254–4263
Meid J, Friedrich T, Tieke B, Lindner P, Richtering W (2011) Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels. Phys Chem Chem Phys 13:3039–3047
Lehmann S, Seiffert S, Richtering W (2012) Spatially resolved tracer diffusion in complex responsive hydrogels. J Am Chem Soc 134:15963–15969
Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Polymeric rotaxanes. Chem Rev 109:5974–6023
Kato K, Komatsu H, Ito K (2010) A versatile synthesis of diverse polyrotaxanes with a dual role of cyclodextrin as both the cyclic and capping components. Macromolecules 43:8799–8804
Kato K, Inoue K, Kidowaki M, Ito K (2009) Organic–inorganic hybrid slide-ring gels: polyrotaxanes consisting of poly(dimethylsiloxane) and gamma-cyclodextrin and subsequent topological cross-linking. Macromolecules 42:7129–7136
Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M (2009) Structure Characterization of tetra-PEG gel by small-angle neutron scattering. Macromolecules 42:1344–1351
Akagi Y, Matsunaga T, Shibayama M, Chung U, Sakai T (2010) Evaluation of topological defects in tetra-PEG gels. Macromolecules 43:488–493
Matsunaga T, Sakai T, Akagi Y, Chung UI, Shibayama M (2009) SANS and SLS Studies on tetra-arm PEG Gels in as-prepared and swollen states. Macromolecules 42:6245–6252
Abdurrahmanoglu S, Can V, Okay O (2009) Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50:5449–5455
Friedrich T, Tieke B, Stadler FJ, Bailly C (2011) Improvement of elasticity and strength of poly(N-isopropylacrylamide) hydrogels upon copolymerization with cationic surfmers. Soft Matter 7:6590–6597
Thomas JD, Fussell G, Sarkar S, Lowman AM, Marcolongo M (2010) Synthesis and recovery characteristics of branched and grafted PNIPAAm-PEG hydrogels for the development of an injectable load-bearing nucleus pulposus replacement. Acta Biomater 6:1319–1328
Wang M, Kornfield JA (2012) Measuring shear strength of soft-tissue adhesives. J Biomed Mater Res Part B-Appl Biomater 100B:618–623
Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190
Oelker AM, Berlin JA, Wathier M, Grinstaff MW (2011) Synthesis and characterization of dendron cross-linked PEG Hydrogels as corneal adhesives. Biomacromolecules 12:1658–1665
M. Wathier and M. W. Grinstaff, Hydrogel sealants for wound repair in ophthalmic surgery, Biomaterials and Regenerative Medicine in Ophthalmology, pp. 411–432, 2009.
Sedo J, Saiz-Poseu J, Busque F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25:653–701
Wilker JJ (2010) Marine bioinorganic materials: mussels pumping iron. Curr Opin Chem Biol 14:276–283
Wilker JJ (2010) The iron-fortified adhesive system of marine mussels. Angew Chem Int Ed 49:8076–8078
Wilker JJ (2011) Biomaterials: Redox and adhesion on the rocks. Nat Chem Biol 7:579–580
Mehdizadeh M, Weng H, Gyawali D, Tang LP, Yang J (2012) Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33:7972–7983
Brubaker CE, Kissler H, Wang LJ, Kaufman DB, Messersmith PB (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31:420–427
Haller CM, Buerzle W, Brubaker CE, Messersmith PB, Mazza E, Ochsenbein-Koelble N, Zimmermann R, Ehrbar M (2011) Mussel-mimetic tissue adhesive for fetal membrane repair: a standardized ex vivo evaluation using elastomeric membranes. Prenat Diagn 31:654–660
Brubaker CE, Messersmith PB (2012) The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28:2200–2205
D. J. Barrett, G. G. Bushnell, and P. B. Messersmith, Mechanically robust, negative-swelling, mussel-inspired tissue adhesive, Advanced Healthcare Materials, vol. DOI: 10.1001/adhm.201200316, 2012.
Kaur S, Weerasekare GM, Stewart RJ (2011) Multiphase Adhesive coacervates inspired by the sandcastle worm. ACS Appl Mater Interfaces 3:941–944
H. Shao and R. J. Stewart, Biomimetic underwater adhesives with environmentally triggered setting mechanisms, Advanced Materials, vol. 22, pp. 729–+, Feb 9 2010.
Shao H, Bachus KN, Stewart RJ (2009) A water-borne adhesive modeled after the sandcastle glue of P-californica. Macromol Biosci 9:464–471
Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J (2010) A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 31:2788–2797
Simson J, Crist J, Strehin I, Lu QZ, Elisseeff JH (2013) An orthopedic tissue adhesive for targeted delivery of intraoperative biologics. J Orthop Res 31:392–400
Amoozgar Z, Rickett T, Park J, Tuchek C, Shi RY, Yeo Y (2012) Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive. Acta Biomater 8:1849–1858
Arunbabu D, Shahsavan H, Zhang W, Zhao BX (2013) Poly(AAc-co-MBA) hydrogel films: adhesive and mechanical properties in aqueous medium. J Phys Chem B 117:441–449
Iyer BVS, Salib IG, Yashin VV, Kowalewski T, Matyjaszewski K, Balazs AC (2013) Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. Soft Matter 9:109–121
Calvo-Marzal P, Delaney MP, Auletta, JT, Pan T, Perri NM, Weiland LM, Waldeck DH, Clark WW, Meyer TY (2012) Manipulating mechanical properties with electricity: Electroplastic elastomer hydrogels. ACS Macro Letters 1:204–208
Acknowledgments
This work was supported by the Weldon School of Biomedical Engineering at Purdue University (GS), by the National Science Foundation (JJW) and by the Office of Naval Research (JJW). We thank the reviewers for useful suggestions and comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Peak, C.W., Wilker, J.J. & Schmidt, G. A review on tough and sticky hydrogels. Colloid Polym Sci 291, 2031–2047 (2013). https://doi.org/10.1007/s00396-013-3021-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00396-013-3021-y