Skip to main content
Log in

Preparation and properties of 3-aminopropyltriethoxysilane functionalized graphene/polyurethane nanocomposite coatings

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Silicone-modified graphene was successfully synthesized by treating graphene oxide with 3-aminopropyltriethoxysilane (AMEO) and then reduced by hydrazine hydrate. Subsequently, the AMEO-functionalized graphene was incorporated into polyurethane (PU) matrix to prepare AMEO-functionalized graphene/PU nanocomposite coatings. The functionalized graphene could disperse homogenously by means of a covalent connection with PU. AMEO-functionalized graphene (AFG)-reinforced PU nanocomposite coatings showed more excellent mechanical and thermal properties than those of pure PU. A 227 % increase in tensile strength and a 71.7 % improvement of elongation at break were obtained by addition 0.2 wt% of AFG. Meanwhile, thermogravimetric analysis reveals that thermal degradation temperature was enhanced almost 50 °C higher than that of neat PU, and differential scanning calorimetry analysis demonstrates that glass transition temperature decreased by around 9 °C. The thermal conductivity of AFG/PU nanocomposite coatings also increased by 40 % at low AFG loadings of 0.2 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-base polymer nanocomposites. Polymer 52:5–25

    Article  CAS  Google Scholar 

  2. Naffakh M, Diez-Pascual AM, Gomez-Fatou MA (2011) New hybrid nanocomposites containing carbon nanotubes, inorganic fullerene-like WS2 nanoparticles and poly(ether ether ketone) (PEEK). J Mater Chem 21:7425–7433

    Article  CAS  Google Scholar 

  3. Arai S, Sato T, Endo M (2011) Fabrication of various electroless Ni–P alloy/multiwalled carbon nanotube composite films on an acrylonitrile butadiene styrene resin. Surf Coat Tech 205:3175–3181

    Article  CAS  Google Scholar 

  4. Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanoscables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. Polym Chem 48:1477–1484

    Article  CAS  Google Scholar 

  5. Keshri AK, Patel R, Agarwal A (2010) Comprehensive process maps to synthesize high density plasma sprayed aluminum oxide composite coatings with varying carbon nanotube content. Surf Coat Tech 205:690–702

    Article  CAS  Google Scholar 

  6. Abyzov AM, Kidalov SV, Shakhov FM (2012) High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Appl Therm Eng 48:72–80

    Article  CAS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  8. Chae HK, Siberio-Perez DY, Kim J et al (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527

    Article  CAS  Google Scholar 

  9. Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  10. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  11. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  12. Tang ZH, Lei YD, Guo BC et al (2012) The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer 53:673–680

    Article  CAS  Google Scholar 

  13. Yoon IS (2011) Role of poly(N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction. J Mater Sci 46:1316–1321

    Article  CAS  Google Scholar 

  14. Jaemyung K, Laura JC et al (2012) Two-dimensional soft material: new faces of graphene oxide. Acc Chem Res 45:1356–1364

    Article  Google Scholar 

  15. Stankovich S, Piner RD, Nguyen ST et al (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    Article  CAS  Google Scholar 

  16. Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  17. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450

    Article  CAS  Google Scholar 

  18. Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Properties of waterbrone polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys 210:1247–1254

    Article  CAS  Google Scholar 

  19. Leivo EM, Keltberg TH, Kotari MJ (2001) Structure and thermal conductivity of flame sprayed polyamide 11 coatings filled with AIN, Al2O3 and BN ceramics. ASM Int Mater Park 204:327–330

    Google Scholar 

  20. Lu X, XU G, Hofstra PG (1998) Moisture absorption, dielectric relaxation, and thermal conductivity studies of polymer composites. J Polym Sci 36:2259–2265

    Article  CAS  Google Scholar 

  21. Choy CL (1977) Thermal conductivity of polymer. Polymer 18:984–1004

    Article  CAS  Google Scholar 

  22. Zhou WY, Qi SH et al (2007) High temperature and insulating heat conductive coating. Acta Materiae Compositae Sinica 24:28–32

    Google Scholar 

  23. Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  24. Yuen SM, Ma CCM, Chiang CL (2008) Silane-grafted MWCNT/polyimide composites preparation, morphological and electrical properties. Compos Sci Technol 68:2842–2848

    Article  CAS  Google Scholar 

  25. Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638

    Article  CAS  Google Scholar 

  26. Hemraj-Benny T, Wong SS (2006) Silylation of single-walled carbon nanotubes. Chem Mater 18:4827–4839

    Article  CAS  Google Scholar 

  27. Hou SF, Su SJ, Kasner ML, Shah P, Patel K, Madarang CJ (2010) Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem Phys Lett 501:68–74

    Article  CAS  Google Scholar 

  28. Pinto PR, Menders LC, Dias ML, Azuma C (2006) Synthesis of acrylic-modified sol–gel silica. Colloid Polym Sci 284:529–535

    Article  CAS  Google Scholar 

  29. Prassas M, Phalippou JL, Mench L, Zarzycki J (1982) Preparation of xNa2O-(1 − x)SiO2 gels for the gel-glass process: I. Atmospheric effect on the structural evolution of the gels. J Non-Cryst Solids 48:79–95

    Article  CAS  Google Scholar 

  30. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammers A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  31. McLauchlin AR, Thomas NL (2009) Preparation and thermal characterisation of poly(lactic acid) nanocomposites prepared from organoclays based on an amphoteric surfactant. Polym Degrad Stab 94:868–872

    Article  CAS  Google Scholar 

  32. Zhong H, Lukes JR (2006) Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys Rev B: Condens Matter 74:1–10

    Article  Google Scholar 

  33. Huxtable S, Cahill D, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano M, Siddons G, Shim M, Keblinski P (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:731–734

    Article  CAS  Google Scholar 

  34. Shenogin S, Liping X, Ozisik R, Keblinski P (2004) Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys 95:8136–8144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from both the National Natural Science Foundation of China (51072059) and Guangdong Science and Technology Project (2011A081301018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenshi Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Wu, L., Zhang, D. et al. Preparation and properties of 3-aminopropyltriethoxysilane functionalized graphene/polyurethane nanocomposite coatings. Colloid Polym Sci 291, 2765–2773 (2013). https://doi.org/10.1007/s00396-013-3014-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3014-x

Keywords

Navigation