Skip to main content
Log in

Hybrid polymeric latexes containing magnetite

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The work describes a study for preparing polystyrene (PSt) and polymethyl methacrylate (PMMA) latex, containing magnetite (Fe3O4), covalently bounded to the polymeric chains. The magnetite was functionalized with various alkoxysilanes containing double bonds: vinyltriethoxysilane (VTES), methacryloyl propyl trimethoxysilane (MPTS) and vinyldimethylethoxysilane (VMe2TES). The ferrite-silane composite forms higher average size particles with MPTS than with VTES. Ferrite functionalized with VMe2TES forms stable latexes with both PSt and PMMA polymers. PSt forms also stable latexes with ferrite functionalized with VTES but unstable with ferrite functionalized with MPTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luo X, Deng F, Luo S, Tu X, Yang L (2011) Grafting of molecularly imprinted polymers from the surface of Fe3O4 nanoparticles containing double bond via suspension polymerization in aqueous environment: A selective sorbent for theophylline. J Appl Polym Sci 121(4):1930–1937. doi:10.1002/app.33710

    Article  CAS  Google Scholar 

  2. Rahman M, Elaissari A (2011) Organic–inorganic hybrid magnetic latex. Adv Polym Sci 233:237–281. doi:10.1007/12_2010_59

    Article  Google Scholar 

  3. Rahman MM, Elaissari A (2012) Multi-stimuli responsive magnetic core-shell particles: synthesis, characterization and specific RNA recognition. J Colloid Sci Biotechnol 1:3–15. doi:10.1166/jcsb.2012.1006

    Article  Google Scholar 

  4. Roveimiab Z, Mahdavian AR, Biazar E, Heidari KS (2012) Preparation of magnetic chitosan nanocomposite particles and their susceptibility for cellular separation applications. J Colloid Sci Biotechnol 1:82–88. doi:10.1166/jcsb.2012.1007

    Article  Google Scholar 

  5. Braconnot S, Eissa MM, Elaissari A (2013) Morphology control of magnetic latex particles prepared from oil in water ferrofluid emulsion. Colloid Polym Sci 291(1):193–203. doi:10.1007/s00396-012-2700-4

    Article  CAS  Google Scholar 

  6. Donescu D, Raditoiu V, Spataru CI, Somoghi R, Ghiurea M, Radovici C, Fierascu RC, Schinteie G, Leca A, Kuncser V (2012) Superparamagnetic magnetite-divinylbenzene-maleic anhydride copolymer nanocomposites obtained by dispersion polymerization. Eur Polym J 48:1709–1716

    Article  CAS  Google Scholar 

  7. Medeiros SF, Santos AM, Fessi H, Elaissari A (2012) Miniemulsion polymerization. J Colloid Sci Biotechnol 1:99–112

    Article  Google Scholar 

  8. Sims J, Kumbhar A, Lin J, Agnoli F, Carpenter E, Sangregorio C, Frommen C, Kolesnichenko V, O’Connor CJ (2003) Synthesis and manipulation of nanophase magnetic materials. Mol Cryst Liq Cryst 379(1):113–120. doi:10.1080/713738678

    Article  Google Scholar 

  9. Sacanna S, Kegel WK, Philipse AP (2007) Spontaneous oil-in-water emulsification induced by charge-stabilized dispersions of various inorganic colloids. Langmuir 23(21):10486–10492. doi:10.1021/la701311b

    Article  CAS  Google Scholar 

  10. Sacanna S, Philipse AP (2007) A generic single-step synthesis of monodisperse core/shell colloids based on spontaneous pickering emulsification. Adv Mater 19(22):3824–3826. doi:10.1002/adma.200700865

    Article  CAS  Google Scholar 

  11. Sacanna S, Philipse AP (2006) Preparation and properties of monodisperse latex spheres with controlled magnetic moment for field-induced colloidal crystallization and (dipolar) chain formation. Langmuir 22(24):10209–10216. doi:10.1021/la0616505

    Article  CAS  Google Scholar 

  12. Hong RY, Pan TT, Han YP, Li HZ, Ding J, Han S (2007) Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids. J Magn Magn Mat 310(1):37–47. doi:10.1016/j.jmmm.2006.07.026

    Article  CAS  Google Scholar 

  13. Zhang F, Su Z, Wen F, Li F (2008) Synthesis and characterization of polystyrene-grafted magnetite nanoparticles. Colloid Polym Sci 286(6–7):837–841. doi:10.1007/s00396-008-1854-6

    Article  CAS  Google Scholar 

  14. Durdureanu-Angheluta A, Ardeleanu R, Pinteala M, Harabagiu V, Chiriac H, Simionescu BC (2008) Silane covered magnetite particles. Preparation and characterization. Digest J Nanomater Bios 3(1):33–40, http://www.chalcogen.infim.ro/Durdureanu-Pinteala.pdf

    Google Scholar 

  15. Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamura M, Toma HE (2004) Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mat 279(2–3):210–217. doi:10.1016/j.jmmm.2004.01.094

    Article  CAS  Google Scholar 

  16. del Campo A, Sen T, Lellouche JP, Bruce IJ (2005) Multifunctional magnetite and silica–magnetite nanoparticles: synthesis, surface activation and applications in life sciences. J Magn Magn Mat 293(1):33–40. doi:10.1016/j.jmmm.2005.01.040

    Article  Google Scholar 

  17. Frickel N, Messing R, Gelbrich T, Schmidt AM (2010) Functional silanes as surface modifying primers for the preparation of highly stable and well-defined magnetic polymer hybrids. Langmuir 26:2839–2846. doi:10.1021/la902904f

    Article  CAS  Google Scholar 

  18. Arsalani N, Fattahi H, Nazarpoor M (2010) Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Exp Polym Lett 4(6):329–338. doi:10.3144/expresspolymlett.2010.42

    Article  CAS  Google Scholar 

  19. Chen Z, Yang Q, Peng K, Guo Y (2011) Surface-initiated nitroxide-mediated radical polymerization of 4-vinylpyridine on magnetite nanoparticles. J Appl Polym Sci 119:3582–3590. doi:10.1002/app.33045

    Article  CAS  Google Scholar 

  20. Pham KN, Fullston D, Sagoe-Crentsil K (2007) Surface charge modification of nano-sized silica colloid. Aust J Chem 60:662–666. doi:10.1071/CH07138

    Article  CAS  Google Scholar 

  21. Herrera NN, Letoffe JM, Putaux JL, David L, Bourgeat-Lami E (2004) Aqueous dispersions of silane-functionalized laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir 20:1564–1571. doi:10.1021/la0349267

    Article  CAS  Google Scholar 

  22. Ianchis R, Donescu D, Petcu C, Rosca ID, Cinteza LO, Nistor CL, Vasile E, Marin A, Preda S (2012) Advanced functionalization of organoclay nanoparticles by silylation and their polystyrene nanocomposites obtained by miniemulsion polymerization. J Nanopart Res 14:1233

    Article  Google Scholar 

  23. Donescu D, Somoghi R, Nistor CL, Ianchis R, Ghiurea M, Prodan G, Radovici C (2012) Copolymeryzation in dispersion of divynil benzene–maleic anhydride in the presence of silylated montmorillonite clays. Polym Bull 68(4):993–1007

    Article  CAS  Google Scholar 

  24. Kobayashi Y, Saeki S, Yoshida M, Nagao D, Konno M (2008) Synthesis of spherical submicron-sized magnetite/silica nanocomposite particles. J Sol–Gel Sci Technol 45:35–41

    Article  CAS  Google Scholar 

  25. De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G (2007) Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater 19:1821–1831. doi:10.1021/cm0628000

    Article  Google Scholar 

  26. Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Coll Int Sci 305:366–370. doi:10.1016/j.jcis.2006.10.023

    Article  CAS  Google Scholar 

  27. Liang YY, Zhang LM, Li W, Chen RF (2007) Polysaccharide-modified iron oxide nanoparticles as an effective magnetic affinity adsorbent for bovine serum albumin. Coll Polym Sci 285:1193–1199. doi:10.1007/s00396-007-1672-2

    Article  CAS  Google Scholar 

  28. Ou DL, Seddon AB (1997) Near- and mid-infrared spectroscopy of sol–gel derived ormosils: vinyl and phenyl silicates. J Non-Cristalline Solids 210:187–203. doi:10.1016/S0022-3093(96)00585-6

    Article  CAS  Google Scholar 

  29. Chen ZP, Xu RZ, Zhang Y, Gu N (2009) Effects of proteins from culture medium on surface property of silanes-functionalized magnetic nanoparticles. Nanoscale Res Lett 4:204–209. doi:10.1007/s11671-008-9226-1

    Article  CAS  Google Scholar 

  30. Vijayendran BR, Bone T, Gajria C (1981) Some studies on vinyl acrylic latex-surfactant interactions. In: El-Aasser MS, Vanderhoff JW (eds) Emulsion polymerization of vinyl acetate. Applied Science Publishing, Essex, pp 253–283

    Chapter  Google Scholar 

  31. Liu G, Liu P (2009) Mono-dispersed functional polymeric nanocapsules with multi-lacuna via soapless microemulsion polymerization with spindle-like α-Fe2O3 nanoparticles as templates. Nanoscale Res Lett 4:281–285. doi:10.1007/s11671-008-9238-x

    Article  CAS  Google Scholar 

  32. Donescu D, Serban S, Petcu C, Nistor CL, Ghiurea M, Corobea MC (2007) Polymer–silica hybrids obtained by microemulsion polymerization. Colloid Polym Sci 285(13):1455–1462. doi:10.1007/s00396-007-1705-x

    Article  CAS  Google Scholar 

  33. Goel T, Kumbhakar M, Mukherjee T, Pal H (2010) Effect of sphere to rod transition on the probe microenvironment in sodium dodecyl sulphate micelles: A time resolved fluorescence anisotropy study. J Photochem and Photobiol A: Chemistry 209:41–48. doi:10.1016/j.jphotochem.2009.10.006

    Article  CAS  Google Scholar 

  34. Lu S, Ramos J, Forcada J (2007) Self-stabilized magnetic polymeric composite nanoparticles by emulsifier-free miniemulsion polymerization. Langmuir 23:12893–12900. doi:10.1021/la702281k

    Article  CAS  Google Scholar 

  35. Babu K, Dhamodharan R (2009) Synthesis of polymer grafted magnetite nanoparticle with the highest grafting density via controlled radical polymerization. Nanoscale Res Lett 4:1090–1102. doi:10.1007/s11671-009-9365-z

    Article  CAS  Google Scholar 

  36. Altavilla C, Ciliberto E, Gatteschi D, Sangregorio C (2005) A new route to fabricate monolayers of magnetite nanoparticles on silicon. Adv Mater 17:1084–1087. doi:10.1002/adma.200401600

    Article  CAS  Google Scholar 

  37. Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Coll Int Sci 314:274–280. doi:10.1016/j.jcis.2007.05.047

    Article  CAS  Google Scholar 

  38. Mahdavian AR, Ashjari M, Mobarakeh HS (2008) Nanocomposite particles with core-shell morphology. I. Preparation and characterization of Fe3O4–poly(butyl acrylate-styrene) particles via miniemulsion polymerizatio. J App Polym Sci 110:1242–1249. doi:10.1002/app.28729

    Article  CAS  Google Scholar 

  39. Xia A, Hu J, Wang C, Jiang D (2007) Synthesis of magnetic microspheres with controllable structure via polymerization-triggered self-positioning of nanocrystals. Small 3:1811–7. doi:10.1002/smll.200700117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors recognise financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: ‘Postdoctoral Program for Advanced Research in the field of nanomaterials.’ The work has also been funded by the Sectoral Operational Programme Human Resources Development 2007–2013 of the Romanian Ministry of Labour, Family and Social Protection through the Financial Agreement POSDRU/107/1.5/S/76909. D. Manaila Maximean acknowledges the financial support from CNCSIS–UEFISCSU, project number ID_123/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doina Manaila-Maximean.

Additional information

All authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donescu, D., Somoghi, R., Spataru, C.I. et al. Hybrid polymeric latexes containing magnetite. Colloid Polym Sci 291, 2345–2358 (2013). https://doi.org/10.1007/s00396-013-2976-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2976-z

Keywords

Navigation