Skip to main content
Log in

Template-directed self-assembly of a designed amphiphilic hexapeptide on mica surface

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Self-assembly of small molecules into highly ordered nanostructures offers many important potential applications in science research and industry. Precise self-assembling with the assistance of inorganic substrate is considered as an ideal strategy. In this experiment, the highly ordered mica surface was used to template the assembling of a novel designed amphiphilic hexapeptide to form orderly parallel fibers. The nanostructure and the self-assembly mechanism were investigated by atomic force microscopy (AFM), transmission electron microscopy, Fourier transform infrared spectroscopy, and circular dichroism techniques. By the experimental results, a dramatic conformation transition from random coil and/or α-helix into β-sheet was found after the peptide assembled on the mica surface under certain conditions, which was considered as a key factor for the ordered nanostructure. Finally, according to the AFM images and the simulated length of peptide molecules, a trilaminar β-sheet structure model was proposed to explain the hierarchical self-assembly mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605

    Article  CAS  Google Scholar 

  2. Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269

    Article  CAS  Google Scholar 

  3. Boyle AL, Bromley EHC, Bartlett GJ, Sessions RB, Sharp TH, Williams CL, Curmi PMG, Forde NR, Linke H, Woolfson DN (2012) Squaring the circle in peptide assembly: from fibers to discrete nanostructures by de novo design. J Am Chem Soc 134:15457–15467

    Article  CAS  Google Scholar 

  4. Fry HC, Garcia JM, Medina MJ, Ricoy UM, Gosztola DJ, Nikiforov MP, Palmer LC, Stupp SI (2012) Self-assembly of highly ordered peptide amphiphile metalloporphyrin arrays. J Am Chem Soc 134:14646–14649

    Article  CAS  Google Scholar 

  5. Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept Sci 94:1–18

    Article  CAS  Google Scholar 

  6. Palmer LC, Stupp SI (2008) Molecular self-assembly into one-dimensional nanostructures. Account Chem Res 41:1674–1684

    Article  CAS  Google Scholar 

  7. Lee JS, Ryu J, Park CB (2009) Bio-inspired fabrication of superhydrophobic surfaces through peptide self-assembly. Soft Matter 5:2717–2720

    Article  CAS  Google Scholar 

  8. Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int Ed 31:153–169

    Article  Google Scholar 

  9. Liu X, Zhang Y, Goswami DK, Okasinski JS, Salaita K, Sun P, Bedzyk MJ, Mirkin CA (2005) The controlled evolution of a polymer single crystal. Science 307:1763–1766

    Article  CAS  Google Scholar 

  10. Dinca V, Kasotakis E, Catherine J, Mourka A, Ranella A, Ovsianikov A, Chichkov BN, Farsari M, Mitraki A, Fotakis C (2007) Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett 8:538–543

    Article  Google Scholar 

  11. Stoykovich MP, Müller M, Kim SO, Solak HH, Edwards EW, de Pablo JJ, Nealey PF (2005) Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308:1442–1446

    Article  CAS  Google Scholar 

  12. Brown CL, Aksay IA, Saville DA, Hecht MH (2002) Template-directed assembly of a de novo designed protein. J Am Chem Soc 124:6846–6848

    Article  CAS  Google Scholar 

  13. Yang G, Woodhouse KA, Yip CM (2002) Substrate-facilitated assembly of elastin-like peptides: studies by variable-temperature in situ atomic force microscopy. J Am Chem Soc 124:10648–10649

    Article  CAS  Google Scholar 

  14. Zhang F, Du HN, Zhang ZX, Ji LN, Li HT, Tang L, Wang HB, Fan CH, Xu HJ, Zhang Y, Hu J, Hu HY, He JH (2006) Epitaxial growth of peptide nanofilaments on inorganic surfaces: effects of interfacial hydrophobicity/hydrophilicity. Angew Chem Int Ed 45:3611–3613

    Article  CAS  Google Scholar 

  15. Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F (1990) Genetic engineering of structural protein polymers. Biotechnol Progr 6:198–202

    Article  CAS  Google Scholar 

  16. Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, Vollrath F, Engström W (2005) Spider silk proteins—mechanical property and gene sequence. Zool Sci 22:273–281

    Article  CAS  Google Scholar 

  17. Hardy JG, Römer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49:4309–4327

    Article  CAS  Google Scholar 

  18. Chen X, Knight DP, Vollrath F (2002) Rheological characterization of nephila spidroin solution. Biomacromolecules 3:644–648

    Article  CAS  Google Scholar 

  19. Dicko C, Vollrath F, Kenney JM (2004) Spider silk protein refolding is controlled by changing pH. Biomacromolecules 5:704–710

    Article  CAS  Google Scholar 

  20. Peng X, Shao Z, Chen X, Knight DP, Wu P, Vollrath F (2004) Further investigation on potassium-induced conformation transition of nephila spidroin film with two-dimensional infrared correlation spectroscopy. Biomacromolecules 6:302–308

    Article  Google Scholar 

  21. Chen X, Shao Z, Knight DP, Vollrath F (2007) Conformation transition kinetics of Bombyx mori silk protein. Proteins 68:223–231

    Article  CAS  Google Scholar 

  22. Ruan QX, Zhou P, Hu BW, Ji D (2008) An investigation into the effect of potassium ions on the folding of silk fibroin studied by generalized two-dimensional NMR–NMR correlation and Raman spectroscopy. FEBS J 275:219–232

    Article  CAS  Google Scholar 

  23. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  Google Scholar 

  24. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48

    Article  CAS  Google Scholar 

  25. Roux B (2005) Ion conduction and selectivity in K+ channels. Annu Rev Biophys Biomol Struct 34:153–171

    Article  CAS  Google Scholar 

  26. Ashley IB (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    Article  Google Scholar 

  27. Zhou P, Xie X, Knight DP, Zong X-H, Deng F, Yao W-H (2004) Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR. Biochemistry 43:11302–11311

    Article  CAS  Google Scholar 

  28. Zhou L, Chen X, Shao Z, Huang Y, Knight DP (2005) Effect of metallic ions on silk formation in the Mulberry silkworm, Bombyx mori. J Phys Chem B 109:16937–16945

    Article  CAS  Google Scholar 

  29. Dang Q, Lu S, Yu S, Sun P, Yuan Z (2010) Silk fibroin/montmorillonite nanocomposites: effect of pH on the conformational transition and clay dispersion. Biomacromolecules 11:1796–1801

    Article  CAS  Google Scholar 

  30. Terry AE, Knight DP, Porter D, Vollrath F (2004) pH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm. Biomacromolecules 5:768–772

    Article  CAS  Google Scholar 

  31. Krimm S (1962) Infrared spectra and chain conformation of proteins. J Mol Biol 4:528–540

    Article  CAS  Google Scholar 

  32. Hoyer W, Cherny D, Subramaniam V, Jovin TM (2004) Rapid self-assembly of α-synuclein observed by in situ atomic force microscopy. J Mol Biol 340:127–139

    Article  CAS  Google Scholar 

  33. Nonoyama T, Tanaka M, Inai Y, Higuchi M, Kinoshita T (2011) Ordered nanopattern arrangement of gold nanoparticles on β-sheet peptide templates through nucleobase pairing. ACS Nano 5:6174–6183

    Article  CAS  Google Scholar 

  34. Fukuma T, Kobayashi K, Matsushige K, Yamada H (2005) True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett 87:034101–034103

    Google Scholar 

  35. Rao J, Zhang Y, Zhang J, Liu S (2008) Facile preparation of well-defined AB2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry. Biomacromolecules 9:2586–2593

    Article  CAS  Google Scholar 

  36. Giacomelli CE, Norde W (2005) Conformational changes of the amyloid β-peptide (1–40) adsorbed on solid surfaces. Macromol Biosci 5:401–407

    Article  CAS  Google Scholar 

  37. Hoernke M, Falenski JA, Schwieger C, Koksch B, Brezesinski G (2011) Triggers for β-sheet formation at the hydrophobic–hydrophilic interface: high concentration, in-plane orientational order, and metal ion complexation. Langmuir 27:14218–14231

    Article  CAS  Google Scholar 

  38. Bezanilla M, Manne S, Laney DE, Lyubchenko YL, Hansma HG (1995) Adsorption of DNA to mica, silylated mica, and minerals: characterization by atomic force microscopy. Langmuir 11:655–659

    Article  CAS  Google Scholar 

  39. Foo CWP, Bini E, Hensman J, Knight DP, Lewis RV, Kaplan DL (2006) Role of pH and charge on silk protein assembly in insects and spiders. Appl Phys A 82:223–233

    Article  CAS  Google Scholar 

  40. Chen X, Knight DP, Shao Z, Vollrath F (2002) Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy: effect of potassium ions on nephila spidroin films. Biochemistry 41:14944–14950

    Article  CAS  Google Scholar 

  41. Miyazawa T, Blout ER (1961) The infrared spectra of polypeptides in various conformations: amide I and II bands. J Am Chem Soc 83:712–719

    Article  CAS  Google Scholar 

  42. Zhou QH, Zheng JK, Shen Z, Fan XH, Chen XF, Zhou QF (2010) Synthesis and hierarchical self-assembly of rod-rod block copolymers via click chemistry between mesogen-jacketed liquid crystalline polymers and helical polypeptides. Macromolecules 43:5637–5646

    Article  CAS  Google Scholar 

  43. Ono SS, Yao H, Matsuoka O, Kawabata R, Kitamura N, Yamamoto S (1999) Anisotropic growth of J aggregates of pseudoisocyanine dye at a mica/solution interface revealed by AFM and polarization absorption measurements. J Phys Chem B 103:6909–6912

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the research project of Sichuan Education Office (10ZC091), the Fundamental Research Funds for the Central Universities (12NZYQN11), and Natural Science Foundation of the Chengdu Medical College (CYZ11-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Han Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Luo, JB., Yang, ST. et al. Template-directed self-assembly of a designed amphiphilic hexapeptide on mica surface. Colloid Polym Sci 291, 2263–2270 (2013). https://doi.org/10.1007/s00396-013-2969-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2969-y

Keywords

Navigation