Skip to main content
Log in

PI-b-PMMA diblock copolymers: nanostructure development in thin films and nanostructuring of thermosetting epoxy systems

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(isoprene-block-methyl methacrylate) (PI-b-PMMA) block copolymers with different block ratios have been used to generate nanostructures both in thin films and by nanostructuring a thermosetting epoxy system. Obtained morphologies have been analyzed in terms of atomic force microscopy. The nanostructuring of thin films was carried out by thermal and solvent vapor annealing, in which the copolymer films were exposed to acetone vapors, selective solvent for methyl methacrylate (PMMA) block. By solvent vapor annealing thin films of both copolymers self-assembled into a hexagonally packed cylindrical morphology. Thermal annealing was carried out above the glass transition temperature of both blocks, obtaining worm-like and lamellar morphologies, depending on the block ratio. One of the copolymers has also been used for nanostructuring an epoxy thermosetting system. Morphologies consisting of spherical-shaped PI domains dispersed in a continuous epoxy matrix in which PMMA remained miscible were obtained, independently of the copolymer amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617. doi:10.1021/ma60078a047

    Article  CAS  Google Scholar 

  2. Bates FS, Fredickson GH (1990) Block copolymer thermodynamic: theory and experiment. Annu Rev Phys Chem 41:525–557. doi:10.1146/annurev.pc.41.100190.002521

    Article  CAS  Google Scholar 

  3. Hadjichristidis N, Pispas S, Fluodas GA (2003) Block copolymers: synthetic strategies, physical properties, and applications. Wiley, New Jersey

    Google Scholar 

  4. Lazzari M, López-Quintela MA (2003) Block copolymer as a tool for nanomaterial fabrication. Adv Mater 15:1583–1594. doi:10.1002/adma.200300382

    Article  CAS  Google Scholar 

  5. Schatz C, Lecommandoux S (2010) Polysaccharide-containing block copolymers: synthesis, properties and applications of an emerging family of glycoconjugates. Macromol Rapid Commun 31:1664–1684. doi:10.1002/marc.201000267

    Article  CAS  Google Scholar 

  6. Blanco M, López M, Kortaberria G, Mondragon I (2010) Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures: effect of copolymer content on nanostructures. Polym Int 59:523–528. doi:10.1002/pi.2731

    Article  CAS  Google Scholar 

  7. Gutierrez J, Mondragon I, Tercjak A (2012) Multifunctional nanostructured composites based on TiO2 nanoparticles. Macromol Symp 321–322:99–104. doi:10.1002/masy.201251117

    Article  Google Scholar 

  8. Balsara NP (1999) Kinetics of phase transitions in block copolymers. Curr Opin Solid State Mater Sci 4:553–558. doi:10.1016/S1359-0286(00)00012-7

    Article  CAS  Google Scholar 

  9. Castelletto V, Hamley IW (2004) Morphologies of block copolymer melts. Curr Opin Solid State Mater Sci 8:426–438. doi:10.1016/j.cossms.2005.06.001

    Article  CAS  Google Scholar 

  10. Matsen MW, Bates FS (1996) Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29:1091–1098. doi:10.1021/ma951138i

    Article  CAS  Google Scholar 

  11. Fasolka MJ, Mayes AM (2001) Block copolymer thin films: physics and applications. Annu Rev Mater Res 31:323–355. doi:10.1146/annurev.matsci.31.1.323

    Article  CAS  Google Scholar 

  12. Misner MJ, Skaff H, Emrick T, Russell TP (2003) Directed deposition of nanoparticles using diblock copolymer templates. Adv Mater 15:221–224

    Article  CAS  Google Scholar 

  13. Hamley WI (2003) Nanostructure fabrication using block copolymers. Nanotechnology 14:39–54. doi:10.1088/0957-4484/14/10/201

    Article  Google Scholar 

  14. Hamley WI (2009) Ordering in thin films of block copolymers: fundamentals to potential applications. Prog Polym Sci 34:1161–1210. doi:10.1016/j.progpolymsci.2009.06.003

    Article  CAS  Google Scholar 

  15. Albalak RJ, Thomas EL, Capel MS (1997) Thermal annealing of roll-cast triblock copolymer films. Polymer 38:3819–3825. doi:10.1016/S0032-3861(96)00938-X

    Article  CAS  Google Scholar 

  16. Ryu HJ, Fortner DB, Lee S, Ferebee R, Graef MO, Misichronis K, Avgeropoulos RJ, Bockstaller M (2013) Role of grain boundary defects during grain coarsening of lamellar block copolymers. Macromolecules 46:204–215. doi:10.1021/ma3015382

    Article  CAS  Google Scholar 

  17. Mansky P, Liu Y, Huang E, Russell TP, Hawker C (1997) Controlling polymer–surface interactions with random copolymer brushes. Science 275:1458–1460. doi:10.1126/science.275.5305.1458

    Article  CAS  Google Scholar 

  18. In I, La YH, Park SM, Nealey PF, Gopalan P (2006) Side-chain-grafted random copolymer brushes as neutral surfaces for controlling the orientation of block copolymer microdomains in thin films. Langmuir 22:7855–7860. doi:10.1021/la060748g

    Article  CAS  Google Scholar 

  19. Xu T, Kim HC, DeRouchey J, Seney C, Levesque C, Martin P, Stafford CM, Russell TP (2001) The influence of molecular weight on nanoporous polymer films. Polymer 42:9091–9095. doi:10.1016/S0032-3861(01)00376-7

    Article  CAS  Google Scholar 

  20. Huang WH, Chen PY, Tung SH (2012) Effects of annealing solvents on the morphology of block copolymer-based supramolecular thin films. Macromolecules 45:1562–1569. doi:10.1021/ma202415t

    Article  CAS  Google Scholar 

  21. Gotrik KW, Hannon AF, Son JG, Keller B, Alexander-Katz A, Ross CA (2012) Morphology control in block copolymer films using mixed solvent vapors. AcsNano 6:8052–8059. doi:10.1021/nn302641z

    CAS  Google Scholar 

  22. Ningrum EO, Chang CC, Lo CT (2011) Effect of solvent annealing on the nano and micro-structure of block copolymer thin film. J Macromol Sci, Part B: Phys 50:1296–1312. doi:10.1080/00222348.2010.507445

    Google Scholar 

  23. Lee DH, Cho H, Yoo S, Park S (2012) Ordering evolution of block copolymer thin films upon solvent-annealing process. J Colloid Interface Sci 383:118–123. doi:10.1016/j.jcis.2012.06.030

    Article  CAS  Google Scholar 

  24. Gong J, Ahn H, Kim E, Lee H, Park S, Lee M, Lee S, Kim T, Kwak EA, Ryu DY (2012) Rapid structural reorganization in thin films of block copolymer self-assembly. Soft Matter 8:3570–3575. doi:10.1039/c2sm07262a

    Article  CAS  Google Scholar 

  25. Albert JNL, Young WS, Lewis RL, Bogart D, Smith JR, Epps TH (2012) Systematic study on the effect of solvent removal rate on the morphology of solvent vapor annealed ABA triblock copolymer thin films. AcsNano 6:9855–9862. doi:10.1021/nn203776c

    Google Scholar 

  26. Seppala JE, Lewis RL, Epps TH (2012) Spatial and orientation control of cylindrical nanostructures in ABA triblock copolymer thin films by raster solvent vapor annealing. AcsNano 6:9855–9862. doi:10.1021/nn303416p

    CAS  Google Scholar 

  27. Morkved TL, Lu M, Urbas AM, Ehrichs EE, Jaeger HM, Mansky P, Russell TP (1996) Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273:931–933. doi:10.1126/science.273.5277.931

    Article  CAS  Google Scholar 

  28. Thurn-Albrecht T, DeRouched J, Russell TP (2002) Overcoming interfacial interactions with electric fields. Macromolecules 3:3250–3253. doi:10.1021/ma991896z

    Google Scholar 

  29. Stoykovich MP, Müller M, Kim SO, Solak HH, Edwards EW, de Pablo JJ, Nealey PF (2005) Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308:1442–1446. doi:10.1126/science.1111041

    Article  CAS  Google Scholar 

  30. Kim SO, Solak HH, Stoykovich MP, Ferrier NJ, de Pablo JJ, Nealey PF (2003) Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424:411–414. doi:10.1038/nature01775

    Article  CAS  Google Scholar 

  31. Segalman RA, Yokoyama H, Kramer EJ (2001) Graphoepitaxy of spherical domain block copolymer films. Adv Mater 13:1152–1155. doi:10.1002/1521-4095(200108)13:15<11

    Article  CAS  Google Scholar 

  32. Segalman RA, Hexemer A, Kramer EJ (2003) Edge effects on the order and freezing of a 2D array of block copolymer spheres. Phys Rev Lett 91:196101. doi:10.1103/PhysRevLett.91.196101

    Article  Google Scholar 

  33. De Rosa C, Park C, Lotz B, Wittmann CJ, Fetters LJ, Thomas EL (2000) Control of molecular and microdomain orientation in a semicrystalline block copolymer thin film by epitaxy. Macromolecules 33:4871–4876. doi:10.1021/ma992132m

    Article  Google Scholar 

  34. De Rosa C, Park C, Thomas EL, Lotz B (2004) Microdomain patterns from directional eutectic solidification and epitaxy. Nature 405:433–437. doi:10.1038/35013018

    Google Scholar 

  35. Van Krevelen DW (1989) Properties of polymers. Elsevier, New York

    Google Scholar 

  36. Huang C, Chapman BR, Lodge TP, Balsara NP (1998) Quantifying the “neutrality” of good solvents for block copolymers: poly(styrene-b-isoprene) in toluene, benzene, and THF. Macromolecules 31:9384–9386. doi:10.1021/ma981259t

    Article  CAS  Google Scholar 

  37. Hanley KJ, Lodge TP, Huang C (2000) Phase behavior of a block copolymer in solvents of varying selectivity. Macromolecules 33:5918–5931. doi:10.1021/ma000318b

    Article  CAS  Google Scholar 

  38. Lodge TP, Hanley KJ, Pudil B, Alahapperuma V (2003) Phase behavior of block copolymers in a neutral solvent. Macromolecules 36:816–822. doi:10.1021/ma0209601

    Article  CAS  Google Scholar 

  39. Mijovic J, Shen M, Sy M, Mondragon I (2000) Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation. Macromolecules 33:5235–5244. doi:10.1021/ma991894e

    Article  CAS  Google Scholar 

  40. Ritzenthaler S, Court F, Girard-Reydet E, Leibler L, Pascault JP (2003) ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules 36:118–126. doi:10.1021/ma0211075

    Article  CAS  Google Scholar 

  41. Maiez-Tribut S, Pascault JP, Soulé ER, Borrajo J, Williams RJJ (2007) Nanostructured epoxies based on the self-assemby of block copolymers: a new miscible block that can be tailored to different epoxy formulations. Macromolecules 40:1268–1273. doi:10.1021/ma062185l

    Article  CAS  Google Scholar 

  42. Larrañaga M, Serrano E, Martin MD, Tercjak A, Kortaberria G, de la Caba K, Riccardi CC, Mondragon I (2007) Mechanical properties–morphology relationships in nano-/microstructured epoxy matrices modified with PEO-PPO-PEO block copolymers. Polym Int 56:1392–1403. doi:10.1002/pi.2289

    Article  Google Scholar 

  43. Fan W, Zheng S (2008) Reaction-induced microphase separation in thermosetting blends of epoxy resin with poly(methyl methacrylate)-block-polystyrene block copolymers: effect of topologies of block copolymers on morphological structures. Polymer 49:3157–3167. doi:10.1016/j.polymer.2008.05.010

    Article  CAS  Google Scholar 

  44. García I, Tercjak A, Rueda L, Mondragon I (2008) Self-assembled nanomaterials using magnetic nanoparticles modified with polystyrene brushes and poly(styrene-b-butadiene-b-styrene). Macromolecules 41:9295–9298. doi:10.1021/ma801701k

    Article  Google Scholar 

  45. Peponi L, Tercjak A, Torre L, Kenny JM, Mondragon I (2008) Morphological analysis of self-assembled SIS block copolymer matrices containing silver nanoparticles. Compos Sci Technol 68:1631–1636. doi:10.1016/j.compscitech.2008.02.032

    Article  CAS  Google Scholar 

  46. Horechyy A, Nandan B, Zafeiropoulos NE, Formanek P, Oertel U, Bigall NC, Eychmüler A, Stamm M (2013) A step-wise approach for dual nanoparticle patterning via block copolymer self-assembly. Adv Funct Mater 2:483–490. doi:10.1002/adfm.201201452

    Article  Google Scholar 

  47. Schillén K, Yekta A, Ni S, Farinha JPS, Winnik MA (1999) Characterization of polyisoprene-b-poly(methyl methacrylate) diblock copolymer micelles in acetonitrile. J Phys Chem B 103:9090–9103. doi:10.1021/jp990251y

    Article  Google Scholar 

  48. Werkhovent T, Mulder FM, Zune C, Jérôme R, de Groot HJM (2003) Determination of polyisoprene-block-poly(methy methacrylate) domain sizes using 1H Spin diffusion. Macromol Chem Phys 204:46–51. doi:10.1002/macp.200290060

    Article  Google Scholar 

  49. Heurtefeu B, Orion J, Ibarboure E, Cloutet E, Cramail H (2011) Polyisoprene-based block copolymers as supports for metallocene and post-metallocene catalytic systems toward ethylene polymerization. New J Chem 35:2322–2332. doi:10.1039/C1NJ20309F

    Article  CAS  Google Scholar 

  50. Ritzenthaler S, Girard-Reydet E, Pascault JP (2000) Influence of epoxy hardener on miscibility of blends of poly(methyl methacrylate) and epoxy networks. Polymer 41:6375–6386. doi:10.1016/S0032-3861(99)00817-4

    Article  CAS  Google Scholar 

  51. Rebizant V, Venet A-S, Tournilhac F, Girard-Reydet E, Navarro C, Pascault JP, Leibler L (2004) Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules 37:8017–8027. doi:10.1021/ma0490754

    Article  CAS  Google Scholar 

  52. Wu J, Thio YS, Bates FS (2005) Structure and properties of PBO–PEO diblock copolymer modified epoxy. J Polym Sci Part B Polym Phys 43:1950–1965. doi:10.1002/polb.20488

    Article  CAS  Google Scholar 

  53. Hydro RM, Pearson RA (2007) Epoxies toughened with triblock copolymers. J Polym Sci Part B Polym Phys 45:1470–1481. doi:10.1002/polb.21166

    Article  CAS  Google Scholar 

  54. Iatrou H, Hadjichristidis N (1992) Synthesis of a model 3-miktoarm star terpolymer. Macromolecules 25:4649–4651. doi:10.1021/ma00044a028

    Article  CAS  Google Scholar 

  55. Motomatsu M, Mizutani W, Tokumoto H (1997) Microphase domains of poly(styrene-block-ethylene/butylene-block-styrene) triblock copolymers studied by atomic force microscopy. Polymer 38:1779–1785. doi:10.1016/S0032-3861(96)00725-2

    Article  CAS  Google Scholar 

  56. Park S, Kim B, Xu J, Hofmann T, Ocko BM, Russell TP (2009) Lateral ordering of cylindrical microdomains under solvent vapor. Macromolecules 42:1278–1284. doi:10.1021/ma802480s

    Article  CAS  Google Scholar 

  57. Martin TM, Young DM (2003) Correlation of the glass transition temperature of plasticized PVC using a lattice fluid model. Polymer 44:4747–4754. doi:10.1016/S0032-3861(03)00446-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to dedicate this paper to the memory of our friend Professor Iñaki Mondragon, who passed away during its preparation. Financial support from the Basque Country Government (NanoIker IE11-304, Grupos Consolidados IT-776-13, SAIOTEK2012-S-PE12UN106) and from the Ministry of Education and Innovation (MAT2012-31675) is gratefully acknowledged. Technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF) is also acknowledged. I.B. thanks Euskal Herriko Unibertsitatea/Universidad del País Vasco for Ph. D Fellowship (Becas de Formación de Investigadores 2011 (PIF/UPV/11/030)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kortaberria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barandiaran, I., Katsigiannopoulos, D., Grana, E. et al. PI-b-PMMA diblock copolymers: nanostructure development in thin films and nanostructuring of thermosetting epoxy systems. Colloid Polym Sci 291, 2173–2180 (2013). https://doi.org/10.1007/s00396-013-2961-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2961-6

Keywords

Navigation