Skip to main content
Log in

Facile synthesis of calcium carbonate with an absolutely pure crystal form using 1-butyl-3-methylimidazolium dodecyl sulfate as the modifier

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Calcium carbonate (CaCO3) nanocrystals with controllable polymorph and morphology have been successfully synthesized with the aid of an effective control agent, a halogen-free, low-cost ionic liquid surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12SO4]) in a supersaturated aqueous solution. For the first time, facile preparation of pure lens-like vaterite, sheet-like calcite, and peanut-like aragonite was all achieved in the [C4mim][C12SO4] aqueous solution through changing the concentration, temperature, and initial pH value and adding magnesium ions. Washed by water and ethanol, all the aggregates were free of [C4mim][C12SO4] and can be stable at least 1 month in air. The crystal form of the aggregates changed from pure calcite to pure vaterite at room temperature only through increasing [C4mim][C12SO4] concentration. Formation of the ordered CaCO3 structures is mainly ascribed to the aggregation of the primary nanoparticles whose formation mechanism is related to the change of supersaturation. This study can provide a facile and environment-friendly method to fabricate CaCO3 crystal aggregates with various morphologies and polymorphs and can be used for large-scale industrial production and biomimetic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

References

  1. Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, pif, is a key macromolecule for nacre formation. Science 325:1388–1390

    Article  CAS  Google Scholar 

  2. Gehrke N, Cölfen H, Pinna N, Antonietti M, Nassif N (2005) Superstructures of calcium carbonate crystals by oriented attachment. Cryst Growth Des 5:1317–1319

    Article  CAS  Google Scholar 

  3. Dalas E, Klepetsanis P, Koutsoukos PG (1999) The overgrowth of calcium carbonate on poly(vinyl chloride-co-vinyl acetate-co-maleic acid). Langmuir 15:8322–8327

    Article  CAS  Google Scholar 

  4. Shen Q, Wei H, Zhao Y, Wang DJ, Zheng LQ, Xu DF (2004) Morphological control of calcium carbonate crystals by polyvinylpyrrolidone and sodium dodecyl benzene sulfonate. Colloid Surf A 251:87–91

    Article  CAS  Google Scholar 

  5. Xiao JW, Yang SH (2010) Hollow calcite crystals with complex morphologies formed from amorphous precursors and regulated by surfactant micellar structures. Cryst Eng Comm 12:3296–3304

    Article  CAS  Google Scholar 

  6. Shen Q, Wei H, Wang LC, Zhou Y, Zhou Y, Zhang ZQ, Wang DJ, Xu GY, Xu DF (2005) Crystallization and aggregation behaviors of calcium carbonate in the presence of poly(vinylpyrrolidone) and sodium dodecyl sulfate. J Phys Chem B 109:18342–18347

    Article  CAS  Google Scholar 

  7. Zhao YY, Li SX, Yu L, Liu YH, Wang XQ, Jiao JJ (2011) The preparation of calcium carbonate crystals regulated by mixed cationic/cationic surfactants. J Cryst Growth 324:278–283

    Article  CAS  Google Scholar 

  8. Yang XD, Xu GY, Chen YJ, Wang F, Mao HZ, Sui WP, Bai Y, Gong HJ (2009) CaCO3 crystallization control by poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer and O-(hydroxy isopropyl) chitosan. J Cryst Growth 311:4558–4569

    Article  CAS  Google Scholar 

  9. Yang HR, Su YL, Zhu HJ, Zhu H, Xie BQ, Zhao Y, Chen YM, Wang DJ (2007) Synthesis of amphiphilic triblock copolymers and application on the morphology control of calcium carbonate crystals. Polymer 48:4344–4351

    Article  CAS  Google Scholar 

  10. Su YL, Yang HR, Shi WX, Guo HX, Zhao Y, Wang DJ (2010) Crystallization and morphological control of calcium carbonate by functionalized triblock copolymers. Colloid Surf A 355:158–162

    Article  CAS  Google Scholar 

  11. Bolze J, Pontoni D, Ballauff M, Narayanan T, Cölfen H (2004) Time-resolved SAXS study of the effect of a double hydrophilic block-copolymer on the formation of CaCO3 from a supersaturated salt solution. J Colloid Interface Sci 277:84–94

    Article  CAS  Google Scholar 

  12. Keene EC, Evans JS, Estroff LA (2010) Silk fibroin hydrogels coupled with the n16N–β-chitin complex: an in vitro organic matrix for controlling calcium carbonate mineralization. Cryst Growth Des 10:5169–5175

    Article  CAS  Google Scholar 

  13. Orme CA, Noy A, Wierzbicki A, McBride MT, Grantham M, Teng HH, Dove PM, DeYoreo JJ (2001) Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411:775–779

    Article  CAS  Google Scholar 

  14. Wolf SE, Loges N, Mathiasch B, Pantofer M, Mey I, Janshoff A, Tremel W (2007) Phase selection of calcium carbonate through the chirality of adsorbed amino acids. Angew Chem Int Ed 46:5618–5623

    Article  CAS  Google Scholar 

  15. Wang T, Leng BX, Che RC, Shao ZZ (2010) Biomimetic synthesis of multilayered aragonite aggregates using alginate as crystal growth modifier. Langmuir 26:13385–13392

    Article  CAS  Google Scholar 

  16. Leng BX, Jiang FG, Lu KB, Ming WH, Shao ZZ (2010) Growth of calcium carbonate mediated by slowly released alginate. Cryst Eng Comm 12:730–736

    Article  CAS  Google Scholar 

  17. Meldrum FC (2003) Calcium carbonate in biomineralisation and biomimetic chemistry. Int Mater Rev 48:187–224

    Article  CAS  Google Scholar 

  18. Albeck S, Aizenberg J, Addadi L, Weiner S (1993) Interactions of various skeletal intracrystalline components with calcite crystals. J Am Chem Soc 115:11691–11697

    Article  CAS  Google Scholar 

  19. Weiner S, Sagi I, Addadi L (2005) Choosing the crystallization path less traveled. Science 309:1027–1028

    Article  CAS  Google Scholar 

  20. Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56–58

    Article  CAS  Google Scholar 

  21. Zhao Y, Chen ZH, Wang HY, Wang JJ (2009) Crystallization control of CaCO3 by ionic liquids in aqueous solution. Cryst Growth Des 9:4984–4986

    Article  CAS  Google Scholar 

  22. Xu AW, Antoneitti M, Cölfen H, Fang YP (2006) Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Adv Funct Mater 16:903–908

    Article  CAS  Google Scholar 

  23. Aziz B, Gebauer D, Hedin N (2011) Kinetic control of particle-mediated calcium carbonate crystallization. Cryst Eng Comm 13:4641–4645

    Article  CAS  Google Scholar 

  24. Ahmed J, Menaka GAK (2009) Controlled growth of nanocrystalline rods, hexagonal plates and spherical particles of the vaterite form of calcium carbonate. Cryst Eng Comm 11:927–932

    Article  CAS  Google Scholar 

  25. Vogel R, Persson M, Feng C, Parkin SJ, Nieminen TA, Wood B, Heckenberg NR, Dunlop HR (2009) Synthesis and surface modification of birefringent vaterite microspheres. Langmuir 25:11672–11679

    Article  CAS  Google Scholar 

  26. Nan ZD, Shi ZY, Yan BQ, Guo R, Hou WG (2008) A novel morphology of aragonite and an abnormal polymorph transformation from calcite to aragonite with PAM and CTAB as additives. J Colloid Interface Sci 317:77–82

    Article  CAS  Google Scholar 

  27. Yu Q, Ou HD, Song RQ, Xu AW (2006) The effect of polyacrylamide on the crystallization of calcium carbonate: synthesis of aragonite single-crystal nanorods and hollow vatarite hexagons. J Cryst Growth 286:178–183

    Article  CAS  Google Scholar 

  28. Liu FL, Gao YA, Zhao SQ, Shen Q, Su YL, Wang DJ (2010) Biomimetic fabrication of pseudohexagonal aragonite tablets through a temperature-varying approach. Chem Commun 46:4607–4069

    Article  CAS  Google Scholar 

  29. Hu ZS, Shao MH, Li HY, Cai Q, Zhong CH, Zhang XM, Deng YL (2009) Synthesis of needle-like aragonite crystals in the presence of magnesium chloride and their application in papermaking. Adv Compos Mater 18:315–326

    Article  Google Scholar 

  30. Wasserscheid P, Hal R, Bosmann A (2002) 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even ‘greener’ ionic liquid. Green Chem 4:400–404

    Article  CAS  Google Scholar 

  31. Davila MJ, Aparicio S, Alcalde R, Garcia B, Leal JM (2007) On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid. Green Chem 9:221–232

    Article  CAS  Google Scholar 

  32. Bai XT, Zheng LQ, Li N, Dong B, Liu HG (2008) Synthesis and characterization of microscale gold nanoplates using Langmuir monolayers of long-chain ionic liquid. Cryst Growth Des 8:3840–3846

    Article  CAS  Google Scholar 

  33. Bai XT, Gao YA, Liu HG, Zheng LQ (2009) Synthesis of amphiphilic ionic liquids terminated gold nanorods and their superior catalytic activity for the reduction of nitro compounds. J Phys Chem C 113:17730–17736

    Article  CAS  Google Scholar 

  34. Zhou Y, Antonietti M (2003) A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure. Chem Commun 20:2564–2565

    Article  Google Scholar 

  35. Zhou Y, Antonietti M (2003) Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique. Adv Mater 15:1452–1455

    Article  CAS  Google Scholar 

  36. Wang TW, Kaper H, Antonietti M, Samrsly B (2007) Templating behavior of a long-chain ionic liquid in the hydrothermal synthesis of mesoporous silica. Langmuir 23:1489–1495

    Article  CAS  Google Scholar 

  37. Jiao JJ, Dong B, Zhang HN, Zhao YY, Wang QX, Wang R, Yu L (2012) Aggregation behaviors of dodecyl sulfate-based anionic surface active ionic liquids in water. J Phys Chem B 116:958–965

    Article  CAS  Google Scholar 

  38. Mukai T, Yoshio M, Kato T, Yoshizawaa M, Ohno H (2005) Anisotropic ion conduction in a unique smectic phase of self-assembled amphiphilic ionic liquids. Chem Commun 10:1333–1335

    Article  Google Scholar 

  39. Li SX, Yu L, Geng F, Shi LJ, Zheng LQ, Yuan SL (2010) Facile preparation of diversified patterns of calcium carbonate the presence of DTAB. J Cryst Growth 312:1766–1773

    Article  CAS  Google Scholar 

  40. Yu JG, Lei M, Cheng B, Zhao XJ (2004) Facile preparation of calcium carbonate particles with unusual morphologies by precipitation reaction. J Cryst Growth 261:566–570

    Article  CAS  Google Scholar 

  41. Fujiwara M, Shiokawa K, Araki M, Ashitaka N, Morigaki K, Kubota T, Nakahara Y (2010) Encapsulation of proteins into CaCO3 by phase transition from vaterite to calcite. Cryst Growth Des 10:4030–4037

    Article  CAS  Google Scholar 

  42. Gao G, Huang P, Wang K, He R, Gui DX (2011) Gram-scale synthesis and shape evolution of micro-CaCO3. Powder Technol 205:270–275

    Article  CAS  Google Scholar 

  43. Kontoyannis CG, Vagenas NV (2000) Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 125:251–255

    Article  CAS  Google Scholar 

  44. Wei H, Shen Q, Zhao Y, Wang DJ, Xu DF (2004) Crystallization habit of calcium carbonate in the presence of sodium dodecyl sulfate and/or polypyrrolidone. J Cryst Growth 260:511–516

    Article  CAS  Google Scholar 

  45. Elfil H, Roques H (2001) Role of hydrate phases of calcium carbonate on the scaling phenomenon. Desalination 137:177–186

    Article  CAS  Google Scholar 

  46. Han YJ, Aizenberg J (2003) Effect of magnesium ions on oriented growth of calcite on carboxylic acid functionalized self-assembled monolayer. J Am Chem Soc 125:4032–4033

    Article  CAS  Google Scholar 

  47. Roberts RB, Min L, Washington MK, Olsen SJ, Settle SH, Coffey RJ, Threadgill DW (2002) Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. PNAS 99:1521–1526

    Article  CAS  Google Scholar 

  48. Raz S, Weiner S, Addadi L (2000) Formation of high-magnesian calcites via an amorphous precursor phase: possible biological implications. Adv Mater 12:38–42

    Article  CAS  Google Scholar 

  49. Oudadesse H, Martin S, Derrien AC, Lucas-Girot A, Cathelineau G, Blondiaux G (2004) Determination of Ca, P, Sr and Mg in the synthetic biomaterial aragonite by NAA. J Radioanal Nucl Chem 262:479–483

    Article  CAS  Google Scholar 

  50. Han TYJ, Aizenberg J (2008) Calcium carbonate storage in amorphous form and its template-induced crystallization. Chem Mater 20:1064–1068

    Article  CAS  Google Scholar 

  51. Wada N, Yamashita K, Umegaki T (1999) Effects of carboxylic acids on calcite formation in the presence of Mg2+ ions. J Colloid Interface Sci 212:357–364

    Article  CAS  Google Scholar 

  52. Cölfen H, Qi LM (2001) A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chem Eur J 7:106–116

    Article  Google Scholar 

  53. Zhou GT, Guan YB, Yao QZ, Fu SQ (2010) Biomimetic mineralization of prismatic calcite mesocrystals: relevance to biomineralization. Ghem Geol 279:63–72

    Article  CAS  Google Scholar 

  54. Gebauer D, Volker A, Cölfen H (2008) Matching glass-forming ability with the density of the amorphous phase. Science 322:1816–1819

    Article  Google Scholar 

  55. Pouget EM, Bomans PHH, Goos JACM, Frederik PM, With G, Sommerdijk NAJM (2009) The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323:1455–1458

    Article  CAS  Google Scholar 

  56. Carrillo AN, Acevedo DF, Miras MC, Barbero CA, Gebauer D, Cölfen H, Arias JL (2008) Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization. Langmuir 24:12496–12507

    Article  Google Scholar 

  57. Pichon BP, Bomans PHH, Frederik PM, Sommerdijk NAJM (2008) A quasi-time-resolved cryoTEM study of the nucleation of CaCO3 under Langmuir monolayers. J Am Chem Soc 130:4034–4040

    Article  CAS  Google Scholar 

  58. Westin KJ, Rasmuson AC (2005) Nucleation of calcium carbonate in presence of citric acid, DTPA, EDTA and pyromellitic acid. J Colloid Interface Sci 282:370–379

    Article  CAS  Google Scholar 

  59. Dzakula BN, Falini G, Brecevic L, Skoko Z, Kralj D (2010) Effects of initial supersaturation on spontaneous precipitation of calcium carbonate in the presence of charged poly-l-amino acids. J Colloid Interface Sci 343:553–563

    Article  Google Scholar 

  60. Kralj D, Kontrec J, Brecevic L, Falini G, Laslo VN (2004) Effect of inorganic anions on the morphology and structure of magnesium calcite. Chem Eur J 10:1647–1656

    Article  CAS  Google Scholar 

  61. Wei H, Shen Q, Zhao Y, Zhou Y, Wang DJ, Xu DF (2005) On the crystallization of calcium carbonate modulated by anionic surfactants. J Cryst Growth 279:439–446

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province of China (no. ZR2011BM017), Scientific and Technological Projects of Shandong Province of China (no. 2009GG10003027), and Independent Innovation Foundation of Shandong University (IIFSDU) of China (no. 2009TS018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1750 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Du, W., Sun, L. et al. Facile synthesis of calcium carbonate with an absolutely pure crystal form using 1-butyl-3-methylimidazolium dodecyl sulfate as the modifier. Colloid Polym Sci 291, 2191–2202 (2013). https://doi.org/10.1007/s00396-013-2960-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2960-7

Keywords

Navigation