Skip to main content
Log in

Controlled ring-opening polymerization of cyclic esters with phosphoric acid as catalysts

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

(R)-(−)-1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate (BPA) has been demonstrated as an efficient organocatalyst for controlled ring-opening homopolymerization of ε-caprolactone (ε-CL) and copolymerization of ε-CL with glycolide and lactide. High molar mass PCL with narrow molar mass distribution has also been synthesized from the bulk ring-opening polymerization (ROP) of ε-CL with BPA as catalysts; the highest molar mass of PCL is 4.35 × 104 g/mol with polydispersity index of 1.20. The successful synthesis of high molar mass PCL is attributed to the bifunctional activation mechanism for the ROP of ε-CL catalyzed by BPA. More interestingly, ppm level of BPA is sufficient to catalyze controlled ROP of ε-CL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hayashi T (1994) Biodegradable polymers for biomedical uses. Prog Polym Sci 19:663–702

    Article  CAS  Google Scholar 

  2. Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486

    Article  CAS  Google Scholar 

  3. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  4. Zhao W, Wang Y, Liu X, Chen X, Cui D, Chen EYX (2012) Protic compound mediated living cross-chain-transfer polymerization of rac-lactide: synthesis of isotactic (crystalline)-heterotactic (amorphous) stereomultiblock polylactide. Chem Commun 48:6375–6377

    Article  CAS  Google Scholar 

  5. Mecerreyes D, Jerome R, Dubois P (1999) Novel macromolecular architectures based on aliphatic polyesters: relevance of the "coordination-insertion" ring-opening polymerization. Adv Polym Sci 147:1–59

    Article  CAS  Google Scholar 

  6. Majerska K, Duda A, Penczek S (2000) Kinetics and mechanism of cyclic esters polymerisation initiated with tin(II) octoate, 4—Influence of proton trapping agents on the kinetics of epsilon-caprolactone and L, L-dilactide polymerisation. Macromol Rapid Commun 21:1327–1332

    Article  CAS  Google Scholar 

  7. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504

    Article  CAS  Google Scholar 

  8. Wang Y, Zhang LF, Wang P, Shen LJ (2010) Ring-opening polymerization of l-lactide with rare earth aryloxides substituted by various alkyl groups. Chin J Polym Sci 28:509–515

    Article  CAS  Google Scholar 

  9. Sun JQ, Pan ZD, Yang SL (1998) Ring-opening polymerization of epsilon-caprolactone by lanthanocene catalysis. Chin J Polym Sci 16:297–303

    CAS  Google Scholar 

  10. Save M, Soum A (2002) Controlled ring-opening polymerization of Lactones and lactide initiated by lanthanum isopropoxide, 2—mechanistic studies. Macromol Chem Phys 203:2591–2603

    Article  CAS  Google Scholar 

  11. Jerome C, Lecomte P (2008) Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv Drug Deliv Rev 60:1056–1076

    Article  CAS  Google Scholar 

  12. Kiesewetter MK, Shin EJ, Hedrick JL, Waymouth RM (2010) Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43:2093–2107

    Article  CAS  Google Scholar 

  13. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev 107:5813–5840

    Article  CAS  Google Scholar 

  14. Nederberg F, Connor EF, Moller M, Glauser T, Hedrick JL (2001) New paradigms for organic catalysts: The first organocatalytic living polymerization. Angew Chem Int Ed 40:2712–2715

    Article  CAS  Google Scholar 

  15. Connor EF, Nyce GW, Myers M, Mock A, Hedrick JL (2002) First example of N-heterocyclic carbenes as catalysts for living polymerization: organocatalytic ring-opening polymerization of cyclic esters. J Am Chem Soc 124:914–915

    Article  CAS  Google Scholar 

  16. Myers M, Connor EF, Glauser T, Mock A, Nyce G, Hedrick JL (2002) Phosphines: nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. J Polym Sci Part A: Polym Chem 40:844–851

    Article  CAS  Google Scholar 

  17. Dove AP, Pratt RC, Lohmeijer BGG, Waymouth RM, Hedrick JL (2005) Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization. J Am Chem Soc 127:13798–13799

    Article  CAS  Google Scholar 

  18. Gazeau-Bureau S, Delcroix D, Martin-Vaca B, Bonrissou D, Navarro C, Magnet S (2008) Organo-catalyzed ROP of epsilon-caprolactone: methanesulfonic acid competes with trifluoromethanesulfonic acid. Macromolecules 41:3782–3784

    Article  CAS  Google Scholar 

  19. Shibasaki Y, Sanada H, Yokoi M, Sanda F, Endo T (2000) Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate. Macromolecules 33:4316–4320

    Article  CAS  Google Scholar 

  20. Persson PV, Schroder J, Wickholm K, Hedenstrom E, Iversen T (2004) Selective organocatalytic ring-opening polymerization: a versatile route to carbohydrate-functionalized poly(is an element of-caprolactones). Macromolecules 37:5889–5893

    Article  CAS  Google Scholar 

  21. Casas J, Persson PV, Iversen T, Cordova A (2004) Direct organocatalytic ring-opening polymerizations of lactones. Adv Synth Catal 346:1087–1089

    Article  CAS  Google Scholar 

  22. Kakuchi R, Tsuji Y, Chiba K, Fuchise K, Sakai R, Satoh T, Kakuchi T (2010) Controlled/living ring-opening polymerization of delta-valerolactone using triflylimide as an efficient cationic organocatalyst. Macromolecules 43:7090–7094

    Article  CAS  Google Scholar 

  23. Sanda F, Sanada H, Shibasaki Y, Endo T (2002) Star polymer synthesis from epsilon-caprolactone utilizing polyol/protonic acid initiator. Macromolecules 35:680–683

    Article  CAS  Google Scholar 

  24. Lou XD, Detrembleur C, Jerome R (2002) Living cationic polymerization of delta-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer. Macromolecules 35:1190–1195

    Article  CAS  Google Scholar 

  25. Basko M, Kubisa P (2006) Cationic copolymerization of epsilon-caprolactone and L, L-lactide by an activated monomer mechanism. J Polym Sci A Polym Chem 44:7071–7081

    Article  CAS  Google Scholar 

  26. Kim MS, Seo KS, Khang G, Lee HB (2005) Ring-opening polymerization of epsilon-caprolactone by poly(ethylene glycol) by an activated monomer mechanism. Macromol Rapid Commun 26:643–648

    Article  CAS  Google Scholar 

  27. Basko M, Kubisa P (2007) Polyester oligodiols by cationic AM copolymerization of L, L-lactide and epsilon-caprolactone initiated by diols. J Polym Sci A Polym Chem 45:3090–3097

    Article  CAS  Google Scholar 

  28. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility, and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93–102

    Article  CAS  Google Scholar 

  29. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  30. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490

    Article  CAS  Google Scholar 

  31. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, Singapore

    Google Scholar 

  32. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176

    Article  CAS  Google Scholar 

  33. Bourissou D, Martin-Vaca B, Dumitrescu A, Graullier M, Lacombe F (2005) Controlled cationic polymerization of lactide. Macromolecules 38:9993–9998

    Article  CAS  Google Scholar 

  34. Basko M, Kubisa P (2008) Mechanism of propagation in the cationic polymerization of L, L-Lactide. J Polym Sci A Polym Chem 46:7919–7923

    Article  CAS  Google Scholar 

  35. Basko M, Kubisa P (2010) Cationic polymerization of L, L-Lactide. J Polym Sci A Polym Chem 48:2650–2658

    Article  CAS  Google Scholar 

  36. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176

    Article  CAS  Google Scholar 

  37. Makiguchi K, Satoh T, Kakuchi T (2011) Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of delta-valerolactone and epsilon-caprolactone. Macromolecules 44:1999–2005

    Article  CAS  Google Scholar 

  38. Delcroix D, Couffin A, Susperregui N, Navarro C, Maron L, Martin-Vaca B, Bourissou D (2011) Phosphoric and phosphoramidic acids as bifunctional catalysts for the ring-opening polymerization of epsilon-caprolactone: a combined experimental and theoretical study. Polym Chem 2:2249–2256

    Article  CAS  Google Scholar 

  39. Chen C, Xu R, Li B (2012) Controlled/living ring-opening polymerization of epsiv-caprolactone catalyzed by phosphoric acid. Sci China Chem 55:1257

    Article  CAS  Google Scholar 

  40. Pratt RC, Lohmeijer BGG, Long DA, Waymouth RM, Hedrick JL (2006) Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J Am Chem Soc 128:4556–4557

    Article  CAS  Google Scholar 

  41. Zhou SB, Xu JG, Yang H, Deng XM (2004) Synthesis and characterization of biodegradable poly(epsilon-caprolactone)-polyglycolide-poly(ethylene glycol) monomethyl ether random copolymer. Macromol Mater Eng 289:576–580

    Article  CAS  Google Scholar 

  42. Yang H, Xu J, Pispas S, Zhang G (2012) Hybrid copolymerization of epsilon-caprolactone and methyl methacrylate. Macromolecules 45:3312–3317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the National Natural Science Foundation (NNSF) of China (21104020), the Ministry of Science and Technology of China (2012CB933802), and the Fundamental Research Funds for the Central Universities is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangzhi Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Hong, L. Controlled ring-opening polymerization of cyclic esters with phosphoric acid as catalysts. Colloid Polym Sci 291, 2155–2162 (2013). https://doi.org/10.1007/s00396-013-2950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2950-9

Keywords

Navigation