Colloid and Polymer Science

, Volume 291, Issue 2, pp 291–298 | Cite as

From substrate disorder to contact angle hysteresis, and back

  • Pierre Collet
  • Joël De Coninck
  • Karim Drouiche
  • François DunlopEmail author
Original Contribution
Part of the following topical collections:
  1. Contact Angle Hysteresis


Based on Monte Carlo simulation of the contact line as a long-range elastic model, we develop tools relating substrate traps, trapping time and trapping length. We demonstrate the possibility of retrieving some information on the substrate topography from measurements of contact line motion, near the threshold in forced spreading or near the advancing angle in spontaneous spreading.


Wetting Adhesion Contact line Contact angle hysteresis Roughness 


  1. 1.
    de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863CrossRefGoogle Scholar
  2. 2.
    Brochard-Wyart F, de Gennes PG (1992) Dynamics of partial wetting. Adv Colloid Interface Sci 39:1–11CrossRefGoogle Scholar
  3. 3.
    Blake TD, Haynes JM (1969) Kinetics of liquid/liquid displacement. J Colloid Interface Sci 30:421–423CrossRefGoogle Scholar
  4. 4.
    Blake TD (1993) Dynamic contact angles and wetting kinetics. In: Berg JC (ed) Wettability. Marcel Dekker, New York, pp 251–309Google Scholar
  5. 5.
    Collet P, De Coninck J, Dunlop F, Regnard A (1997) Dynamics of the contact line: contact angle hysteresis. Phys Rev Lett 79:3704–3707CrossRefGoogle Scholar
  6. 6.
    Joanny JF, de Gennes PG (1984) A model for contact angle hysteresis. J Chem Phys 81:552CrossRefGoogle Scholar
  7. 7.
    Pomeau Y, Vannimenus J (1985) Contact angle on heterogeneous surfaces: weak heterogeneities. J Colloid Interface Sci 104:477–488CrossRefGoogle Scholar
  8. 8.
    Savva N, Pavliotis GA, Kalliadasis S (2011) Contact lines over random topographical substrates. Part 1. Statics. J Fluid Mech 672:384–410CrossRefGoogle Scholar
  9. 9.
    Kou JL, Lu HJ, Wu FM, Fan JT (2011) Toward the hydrophobic state transition by the appropriate vibration of substrate. EPL 96:56008CrossRefGoogle Scholar
  10. 10.
    Vedantam S, Panchagnula MV (2007) Phase field modeling of hysteresis in sessile drops. Phys Rev Lett 99:176102CrossRefGoogle Scholar
  11. 11.
    Rosso A, Krauth W (2002) Roughness at the depinning threshold for a long-range elastic string. Phys Rev E 65:025101CrossRefGoogle Scholar
  12. 12.
    Katzav E, Adda-Bedia M, Ben Amar M, Boudaoud A (2007) Roughness of moving elastic lines: crack and wetting fronts. Phys Rev E 76:051601CrossRefGoogle Scholar
  13. 13.
    Kolton AB, Rosso A, Giamarchi T, Krauth W (2009) Creep dynamics of elastic manifolds via exact transition pathways. Phys Rev B 79:184207CrossRefGoogle Scholar
  14. 14.
    Le Doussal P, Wiese KJ, Raphael E, Golestanian R (2006) Can nonlinear elasticity explain contact-line roughness at depinning? Phys Rev Lett 96:015702CrossRefGoogle Scholar
  15. 15.
    Monthus C, Garel T (2008) Driven interfaces in random media at finite temperature: is there an anomalous zero-velocity phase at small external force? Phys Rev E 78:041133CrossRefGoogle Scholar
  16. 16.
    Sutton MA, Orteu JJ, Schreier HW (2009) Image correlation for shape, motion and deformation measurements. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pierre Collet
    • 1
  • Joël De Coninck
    • 2
  • Karim Drouiche
    • 3
  • François Dunlop
    • 3
    Email author
  1. 1.Centre de Physique ThéoriqueCNRS UMR 7644, Ecole PolytechniquePalaiseauFrance
  2. 2.University of MonsMonsBelgium
  3. 3.Laboratoire de Physique Théorique et ModélisationCNRS UMR 8089, Université de Cergy-PontoiseCergy-PontoiseFrance

Personalised recommendations