Skip to main content
Log in

High- and low-adhesive superhydrophobicity on the liquid flame spray-coated board and paper: structural effects on surface wetting and transition between the low- and high-adhesive states

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Surface wetting is an important and relevant phenomenon in several different fields. Scientists have introduced a large number of applications where special surface wetting could be exploited. Here, we study wetting phenomena on high- and low-adhesive superhydrophobic liquid flame spray (LFS)-generated TiO2 coatings on paper and pigment-coated board substrates using water–ethanol solution as a probe liquid. Submicrometer-scale air gaps, which exist on superhydrophobic surfaces below the liquid droplets, were more stable with the ethanol increment than the larger-scale micrometric air gaps. With the droplet ethanol concentration of 15 wt%, static contact angle as high as 155 ± 2° was measured on the LFS–TiO2-coated board. Transition from the low-adhesive wetting state to the high-adhesive state was demonstrated on the LFS–TiO2-coated paper. The LFS method enables efficient roll-to-roll production of surfaces with special wetting properties on economically viable board and paper substrate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54:137–178

    Article  CAS  Google Scholar 

  2. Liu M, Zheng Y, Zhai J, Jiang L (2010) Bioinspired super-antiwetting interfaces with special liquid─solid adhesion. Acc Chem Res 43:368–377

    Article  CAS  Google Scholar 

  3. Byun D, Hong J, Saputra KJH, Lee YJ, Park HC, Byun B-K, Lukes JR (2009) Wetting characteristics of insect wing surfaces. J Bionic Eng 6:63–70

    Article  Google Scholar 

  4. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  5. Zheng Y, Gao X, Jiang L (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3:178–182

    Article  CAS  Google Scholar 

  6. Fang Y, Sun G, Cong Q, G-h C, L-q R (2008) Effects of methanol on wettability of the non-smooth surface on butterfly wing. J Bionic Eng 5:127–133

    Article  Google Scholar 

  7. Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432:36

    Article  CAS  Google Scholar 

  8. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24:4114–4119

    Article  CAS  Google Scholar 

  9. Teisala H, Tuominen M, Kuusipalo J (2011) Adhesion mechanism of water droplets on hierarchically rough superhydrophobic rose petal surface. J Nanomater. doi:10.1155/2011/818707

  10. Kuusipalo J (2008) Paper and paperboard converting, 2nd edn. Paperi ja Puu Oy, Jyväskylä

    Google Scholar 

  11. Bhushan B, Jung YC, Koch K (2009) Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 25:3240–3248

    Article  CAS  Google Scholar 

  12. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  13. Schmidt H (1994) Multifunctional inorganic─organic composite sol─gel coatings for glass surfaces. J Non-Cryst Solids 178:302–312

    Article  CAS  Google Scholar 

  14. Ahn CH, Choi J-W, Beaucage G, Nevin JH, Lee J-B, Puntambekar A, Lee JY (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92:154–173

    Article  CAS  Google Scholar 

  15. Londe G, Chunder A, Wesser A, Zhai L, Cho HJ (2008) Microfluidic valves based on superhydrophobic nanostructures and switchable thermosensitive surface for lab-on-a-chip (LOC) systems. Sensors Actuators, B 132:431–438

    Article  Google Scholar 

  16. Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Opin Colloid Interface Sci 11:193–202

    Article  CAS  Google Scholar 

  17. Roach P, Shirtcliffe NJ, Newton MI (2008) Progress in superhydrophobic surface development. Soft Matter 4:224–240

    Article  CAS  Google Scholar 

  18. Carré A, Mittal KL (2009) Superhydrophobic surfaces. VSP/Brill, Leiden

    Google Scholar 

  19. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  20. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  21. Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99

    Article  Google Scholar 

  22. Kulinich SA, Farzaneh M (2009) Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces. Appl Surf Sci 255:4056–4060

    Article  CAS  Google Scholar 

  23. Teisala H, Tuominen M, Aromaa M, Stepien M, Mäkelä JM, Saarinen JJ, Toivakka M, Kuusipalo J (2012) Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Langmuir 28:3138–3145. doi:10.1021/la203155d

    Article  CAS  Google Scholar 

  24. Balu B, Berry AD, Hess DW, Breedveld V (2009) Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9:3066–3075

    Article  CAS  Google Scholar 

  25. Nyström D, Lindqvist J, Östmark E, Hult A, Malmström E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 34:3594─3596

    Google Scholar 

  26. Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590

    Article  CAS  Google Scholar 

  27. Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790

    Article  CAS  Google Scholar 

  28. Yang H, Deng Y (2008) Preparation and physical properties of superhydrophobic papers. J Colloid Interface Sci 325:588–593

    Article  CAS  Google Scholar 

  29. Balu B, Kim JS, Breedveld V, Hess DW (2009) Tunability of the adhesion of water drops on a superhydrophobic paper surface via selective plasma etching. J Adhesion Sci Technol 23:361–380

    Article  CAS  Google Scholar 

  30. Quan C, Werner O, Wågberg L, Turner C (2009) Generation of superhydrophobic paper surfaces by a rapidly expanding supercritical carbon dioxide-alkyl ketene dimer solution. J Supercrit Fluids 49:117–124

    Article  CAS  Google Scholar 

  31. Werner O, Quan C, Turner C, Pettersson B, Wågberg L (2010) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17:187–198

    Article  CAS  Google Scholar 

  32. Wang S, Li M, Lu Q (2010) Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl Mater Interfaces 2:677–683

    Article  CAS  Google Scholar 

  33. Tikkanen J, Gross KA, Berndt CC, Pitkänen V, Keskinen J, Raghu S, Rajala M, Karthikeyan J (1997) Characteristics of the liquid flame spray process. Surf Coat Technol 90:210–216

    Article  CAS  Google Scholar 

  34. Aromaa M, Keskinen H, Mäkelä JM (2007) The effect of process parameters on the liquid flame spray generated titania nanoparticles. Biomol Eng 24:543–548

    Article  CAS  Google Scholar 

  35. Teisala H, Tuominen M, Aromaa M, Mäkelä JM, Stepien M, Saarinen JJ, Toivakka M, Kuusipalo J (2010) Development of superhydrophobic coating on paperboard surface using the liquid flame spray. Surf Coat Technol 205:436–445

    Article  CAS  Google Scholar 

  36. Teisala H, Tuominen M, Aromaa M, Stepien M, Mäkelä JM, Saarinen JJ, Toivakka M, Kuusipalo J (2012) Nanoparticle deposition on packaging materials by liquid flame spray ─generation of superhydrophilic and superhydrophobic coatings. In: Proceedings of the Special Symposium on Recent Advances in Adhesion Science and Technology, 240th ACS National Meeting, August 22–26, 2010, Boston, Accepted.

  37. Stepien M, Saarinen JJ, Teisala H, Tuominen M, Aromaa M, Kuusipalo J, Mäkelä JM, Toivakka M (2011) Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition. Appl Surf Sci 257:1911–1917

    Article  CAS  Google Scholar 

  38. Mäkelä JM, Aromaa M, Teisala H, Tuominen M, Stepien M, Saarinen JJ, Toivakka M, Kuusipalo J (2011) Nanoparticle deposition from liquid flame spray onto moving roll-to-roll paperboard material. Aerosol Sci Technol 45:827–837

    Article  Google Scholar 

  39. Tuominen M, Teisala H, Aromaa M, Stepien M, Mäkelä JM, Saarinen JJ, Toivakka M, Kuusipalo J (2012) Creation of superhydrophilic surfaces of paper and board. J Adhesion Sci Technol. doi:10.1080/01694243.2012.697744

  40. Vázquez G, Alvarez E, Navaza JM (1995) Surface tension of alcohol + water from 20 to 50 °C. J Chem Eng Data 40:611–614

    Article  Google Scholar 

  41. Jung YC, Bhushan B (2007) Wetting transition of water droplets on superhydrophobic patterned surfaces. Scr Mater 57:1057–1060

    Article  CAS  Google Scholar 

  42. Varanasi KK, Deng T, Hsu MF, Bhate N (2009) Wetting hysteresis, metastability, and droplet impact on superhydrophobic surfaces. In: Proceedings of IPACK2009, InterPACK´09, 2009, San Francisco, California, USA

  43. Callies M, Quéré D (2005) On water repellency. Soft Matter 1:55–61

    Article  CAS  Google Scholar 

  44. Boreyko JB, Baker CH, Poley CR, Chen C-H (2011) Wetting and dewetting transitions on hierarchical superhydrophobic surfaces. Langmuir 27:7502–7509

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Tekes (Finnish Funding Agency for Technology and Innovation) is acknowledged for the financial support of this study. The work was carried out in the Functional Materials 2007–2013 program, under the project called Liquid Flame Spray nanocoating for flexible roll-to-roll web materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannu Teisala.

Additional information

This article is part of the Topical Collection on Contact Angle Hysteresis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teisala, H., Tuominen, M., Aromaa, M. et al. High- and low-adhesive superhydrophobicity on the liquid flame spray-coated board and paper: structural effects on surface wetting and transition between the low- and high-adhesive states. Colloid Polym Sci 291, 447–455 (2013). https://doi.org/10.1007/s00396-012-2833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2833-5

Keywords

Navigation