Skip to main content
Log in

Enhanced crystallization behaviors of poly(ethylene terephthalate) via adding expanded graphite and poly(ethylene glycol)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A compound additive system consisting of expanded graphite (EG) and poly(ethylene glycol) (PEG) was designed to enhance the crystallization of poly(ethylene terephthalate) (PET). In this additive system, EG acted as a heterogeneous nucleating agent to reduce energy barrier for nucleation, while PEG played as plasticizer to improve mobility of PET chains. Simultaneously adding EG and PEG resulted in faster crystallization kinetics than the cases of solely adding EG or PEG in both of non-isothermal and isothermal crystallization processes, indicating a synergistic effect of EG and PEG on enhancing PET crystallization. However, for non-isothermal crystallization process, in which crystallization occurred from a cooling melt, EG played a dominant role. As to isothermal crystallization process where crystallization took place in a super-cooling state, PEG seemed to be more important. Moreover, the chain conformation change among the semi-crystalline PET specimens was ascertained by Fourier transform infrared spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mark HF, Gaylord NG, Bikales NM, et al. I (1969) In: Goodman, Encyclopedia of polymer science and technology, Interscience, New York

  2. Brozenic NJ (1986) Modern plastics encyclopedia. McGrawHill, New York

    Google Scholar 

  3. Chemical & Engineering News; April 18, 1994

  4. Reinsch VE, Rebendfeld L (1994) J Appl Polym Sci 52:649

    Article  CAS  Google Scholar 

  5. Wu D, Chen F, Li R, Shi Y (1997) Macromolecules 30:6737

    Article  CAS  Google Scholar 

  6. Groeninekx G, Berghmans H, Overbergh N, Smets G (1974) J Polymer Sci B Polymer Phys 12:303–316

    Article  Google Scholar 

  7. Run MT, Wu SZ, Zhang DY, Wu G (2005) Polymer 46:5308–5316

    Article  CAS  Google Scholar 

  8. Ke YC, Wu TB, Xia YF (2007) Polymer 48:3324–3336

    Article  CAS  Google Scholar 

  9. Legras R, Bailly C, Daumeie M, Dekoninck JM, Mercier JP (1984) Polymer 25:835–844

    Article  CAS  Google Scholar 

  10. Garcia D (1984) J Polymer Sci B Polymer Phys 22:2063–2072

    Article  CAS  Google Scholar 

  11. Gilmer JW, Neu RP, Liu YJ, Jen AKY (1995) Polym Eng Sci 35:1407–1412

    Article  CAS  Google Scholar 

  12. Chen G, Weng W, Wu D, Wu C (2003) Eur Polymer J 39:2329–2335

    Article  CAS  Google Scholar 

  13. Sheng W, Wong SC (2003) Compos Sci Technol 63:225–235

    Article  Google Scholar 

  14. Zheng W, Wong SC, Sue HJ (2002) Polymer 73:6767–6773

    Article  Google Scholar 

  15. Pan YX, Yu ZZ, Ou YC, Hu GH (2000) J Polymer Sci Polymer Phys 38:1626–1633

    Article  CAS  Google Scholar 

  16. Shen JW, Chen XM, Huang WY (2003) J Appl Polymer Sci 88:1864–1869

    Article  CAS  Google Scholar 

  17. Chen GH, Wu DJ, Weng WG, Yan WL (2001) J Appl Polymer Sci 82:2506–2513

    Article  CAS  Google Scholar 

  18. Kulinski Z, Piorkowska E (2005) Polymer 46:10290–10300

    Article  CAS  Google Scholar 

  19. Li H, Huneault MA (2007) Polymer 48:6855–6866

    Article  CAS  Google Scholar 

  20. Wang XH, Zhu ZX, Bu HS (1995) Acta Polymer 46:163–167

    Article  CAS  Google Scholar 

  21. Li YL, Wu HY, Wang Y, Liu L, Han L, Wu J, Xiang FM (2010) J Polymer Sci Polymer Phys 48:520–528

    Article  CAS  Google Scholar 

  22. Li M, Hu DF, Wang YM, Shen CY (2010) Polym Eng Sci 50:2298–2305

    Article  CAS  Google Scholar 

  23. Bertoldo M, Labardi M, Rotella C, Capaccioli S (2010) Polymer 51:3660–3668

    Article  CAS  Google Scholar 

  24. Adar F, Noether H (1985) Polymer 26:1935–1943

    Article  CAS  Google Scholar 

  25. Ajji A, Guevremont J, Cole KC, Dumoulin MM (1996) Polymer 37:3707–3714

    Article  CAS  Google Scholar 

  26. Cole KC, Ajji A, Pellerin E (2002) Macromolecules 5:770–784

    Article  Google Scholar 

  27. Spiros T, Vasilis D, Dionysis EM, Dieter F, Vasilis GG (2006) Macromolecules 39:9150–9156

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thanks to the National Natural Science Foundation of China for financial support (21074075, 50903048, 51121001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Jj., Yang, Gh., Zhou, Tn. et al. Enhanced crystallization behaviors of poly(ethylene terephthalate) via adding expanded graphite and poly(ethylene glycol). Colloid Polym Sci 291, 911–917 (2013). https://doi.org/10.1007/s00396-012-2809-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2809-5

Keywords

Navigation