Skip to main content
Log in

Hybrid material based on ST–AA photonic crystal core and ZnO particle shell

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aim of this study was to obtain a hybrid material based on a polymer photonic crystal core and inorganic ZnO shell with potential applications in optoelectronic devices or photocatalysts. For this reason, ZnO particles were obtained both in the absence and presence of ST–AA particles using a chemical reduction method for metal salts. The inhibited growth mechanism of inorganic particles generated in the presence of polymer latex was noticed. The products were characterized by SEM, EDX, TEM, DLS, and UV–vis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Chan CH, Chen CC, Huang CK, Wen WH, Wei HS, Chen H, Lin HT, Chang HS, Chen WY, Chang WH, Hsu TM (2005) Self-assembled free-standing colloidal crystals. Nanotechnology 16:1440–1444

    Article  CAS  Google Scholar 

  2. Waterhouse GIN, Waterland MR (2007) Opal and inverse opal photonic crystals: fabrication and characterization. Polyhedron 26:356–368

    Article  CAS  Google Scholar 

  3. Cong C, Junus WC, Shen Z, Yu T (2009) New colloidal lithographic nanopatterns fabricated by combining pre-heating and reactive ion etching. Nanoscale Res Lett 4:1324–1328

    Article  CAS  Google Scholar 

  4. Rusen E, Mocanu A, Marculescu B, Diacon A (2011) Fluorescence enhancement of rhodamine B in the presence of photonic crystal heterostructures. J Phys Chem 115:14947–14953

    Article  CAS  Google Scholar 

  5. Diacon A, Rusen E, Mocanu A, Hudhomme P, Cincu C (2011) Fluorescence properties of photonic crystals doped with perylenediimide. Langmuir 27:7464–7470

    Article  CAS  Google Scholar 

  6. Cardoso AH, Leite CA, Zaniquelli ME, Galembeck F (1998) Easy polymer latex self-assembly and colloidal crystal formation: the case of poly[styrene-co-(2-hydroxyethyl methacrylate)]. Colloid Surface A 144:207–217

    Article  Google Scholar 

  7. Preda N, Matei E, Enculescu M, Rusen E, Mocanu A, Marculescu B, Enculescu I (2011) Effect of aqueous comonomer solubility on the surfactant-free emulsion copolymerization of methyl methacrylate. J Polym Res 18:25–30

    Article  CAS  Google Scholar 

  8. Chen Y, Sajjadi S (2009) Particle formation and growth in ab initio emulsifier-free emulsion polymerisation under monomer-starved conditions. Polymer 50:357–365

    Article  CAS  Google Scholar 

  9. Yamamoto T, Nakayama M, Kanda Y, Higashitani K (2006) Growth mechanism of soap-free polymerization of styrene investigated by AFM. J Colloid Interf Sci 297:112–121

    Article  CAS  Google Scholar 

  10. Zhang L, Xiong Y (2007) Rapid self-assembly of submicrospheres at liquid surface by controlling evaporation and its mechanism. J Colloid Interf Sci 306:428–432

    Article  CAS  Google Scholar 

  11. Jun HM, Young-Sang C, Seung-Man Y (2009) Room temperature chemical vapor deposition for fabrication of titania inverse opals: fabrication, morphology analysis and optical characterization. Bull Korean Chem Soc 30:2245–2248

    Article  Google Scholar 

  12. Rusen E, Mocanu A, Corobea C, Marculescu B (2010) Obtaining of monodisperse particles through soap-free polymerization in the presence of C60. Colloid Surface A 355:23–28

    Article  CAS  Google Scholar 

  13. Rusen E, Mocanu A, Marculescu B (2010) Obtaining of monodisperse particles through soap-free and seeded polymerization, respectively, through polymerization in the presence of C60. Colloid Polym Sci 288:769–776

    Article  CAS  Google Scholar 

  14. Yu DG, An JH (2004) Titanium dioxide core/polymer shell hybrid composite particles prepared by two-step dispersion polymerization. Colloid Surface A 237:87–93

    Article  CAS  Google Scholar 

  15. Preda N, Rusen E, Musuc A, Enculescu M, Matei E, Marculesc B, Fruth V, Enculescu I (2010) Synthesis and properties of poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite. Mater Res Bull 45:1008–1012

    Article  CAS  Google Scholar 

  16. Diacon A, Mocanu A, Boscornea C, Hudhomme P (2012) Monomer type emission of perylenediimide derivatives doped polymer particles. Colloid Surface A 407:9–15

    Article  CAS  Google Scholar 

  17. Li Y, Sun Z, Zhang J, Zhang K, Wang Y, Wang Z, Chen X, Zhu S, Yang B (2008) Polystyrene@TiO2 core–shell microsphere colloidal crystals and nonspherical macro-porous materials. J Colloid Interf Sci 325:567–572

    Article  CAS  Google Scholar 

  18. Zhang S, Zhao XW, Xu H, Zhu R, Gu ZZ (2007) Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MAA) particles. J Colloid Interf Sci 316:168–174

    Article  CAS  Google Scholar 

  19. Lee J, Hong CK, Choe S, Shim SE (2007) Synthesis of polystyrene/silica composite particles by soap-free emulsion polymerization using positively charged colloidal silica. J Colloid Interf Sci 310:112–120

    Article  CAS  Google Scholar 

  20. Pi M, Yang T, Yuan J, Fujii S, Kakigi Y, Nakamura Y, Cheng S (2010) Biomimetic synthesis of raspberry-like hybrid polymer–silica core–shell nanoparticles by templating colloidal particles with hairy polyamine shell. Colloid Surface B 78:193–199

    Article  CAS  Google Scholar 

  21. Vasile E, Rusen E, Mocanu A, Patrascu M, Calinescu I (2012) Polymer colloids and silver nanoparticles hybrid materials. Colloid Polym Sci 290:193–201

    Article  CAS  Google Scholar 

  22. Mocanu A, Marculesc B, Somoghi R, Miculescu F, Boscornea C, Stancu IC (2011) Fluorescence enhancement for the complex PAMAM–BSA in the presence of photonic crystal heterostructures. Colloid Surface A 392:288–293

    Article  CAS  Google Scholar 

  23. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  24. Sun HZ, Yang B (2008) In situ preparation of nanoparticles/polymer composites. Sci China Ser E 51:1886–1901

    Article  CAS  Google Scholar 

  25. Taniguchi T, Kashiwakura T, Inada T, Kunisada Y, Kasuya M, Kohri M, Nakahira T (2010) Preparation of organic/inorganic composites by deposition of silica onto shell layers of polystyrene (core)/poly[2-(N, N-dimethylamino)ethyl methacrylate] (shell) particles. J Colloid Interf Sci 347:62–68

    Article  CAS  Google Scholar 

  26. Sounderya N, Zhang Y (2008) Use of core/shell structured nanoparticles for biomedical applications. Recent Patents on Biomedical Engineering 1:34–42

    Article  CAS  Google Scholar 

  27. Lü C, Guan C, Liu Y, Cheng Y, Yang B (2005) PbS/polymer nanocomposite optical materials with high refractive index. Chem Mater 17:2448–2454

    Article  Google Scholar 

  28. Huang JM, Yang Y, Yang B et al (1996) Synthesis of the CdS nanoparticles in polymer networks. Polym Bull 36(3):337–340

    Article  CAS  Google Scholar 

  29. Zhang S, Zhu Y, Yang X, Li C (2005) Fabrication of core–shell latex spheres with CdS/polyelectrolyte composite multilayers. Colloid Surface A 264:215–218

    Article  CAS  Google Scholar 

  30. Xu C, Wang X, Wang ZL (2009) Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc 131:5866–5872

    Article  CAS  Google Scholar 

  31. Lyu SC, Zhang Y, Lee CJ (2003) Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem Mater 15:3294–3299

    Article  CAS  Google Scholar 

  32. Wang X, Zhang Q, Wan Q, Dai G, Zhou C, Zou B (2011) Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity. J Phys Chem 115:2769–2775

    CAS  Google Scholar 

  33. Pu X, Zhang D, Yi X, Shao X, Li W, Sun M, Li L, Qian X (2010) Rapid chemical synthesis and optical properties of ZnO ellipsoidal nanostructures. Adv Powder Technol 21:344–349

    Article  CAS  Google Scholar 

  34. Mocanu A, Rusen E, Marculesc B, Cincu C (2011) Synthesis and characterization of a hybrid material from self-assembling colloidal particles and carbon nanotubes. Colloid Polym Sci 289:387–394

    Article  CAS  Google Scholar 

  35. Rusen E, Mocanu A, Marculescu B, Andronescu C, Stancu IC, Butac LM, Ioncea A, Antoniac I (2010) Influence of the solid–liquid adhesion on the self-assembling properties of colloidal particles. In: Laine V (ed) Photonic crystals: fabrication, band structure and applications. Nova Science, Hauppauge

    Google Scholar 

  36. Liu H, Wang D, Yang X (2012) Preparation of polymer@titania raspberry-like core–corona composite via heterocoagulated self-assembly based on hydrogen-bonding interaction. Colloid Surface A 397:48–58

    Article  CAS  Google Scholar 

  37. Kataby G, Cojocaru M, Prozorov R, Gedanken A (1999) Coating carboxylic acids on amorphous iron nanoparticles. Langmuir 15:1703–1708

    Article  CAS  Google Scholar 

  38. Lee CF, Liu YS (2011) The preparation and characteristics of poly(methyl methacrylate–methylacrylate acid)/nano-ZnO composite latex particles. Polym Bull 67:1245–1259

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Authority for Scientific Research from The Ministry of Education, Research and Youth of Romania is gratefully acknowledged for the financial support through two projects: “POSDRU/88/1.5/S/61178” and “POSDRU/89/1.5/S/54785.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edina Rusen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mocanu, A., Rusen, E., Cincu, C. et al. Hybrid material based on ST–AA photonic crystal core and ZnO particle shell. Colloid Polym Sci 290, 1949–1954 (2012). https://doi.org/10.1007/s00396-012-2795-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2795-7

Keywords

Navigation