Skip to main content

Controlled placement of polystyrene-grafted CdSe nanoparticles in self-assembled block copolymers

Abstract

Surface functionalization of semiconductor CdSe nanoparticles has been achieved with polystyrene (PS) brushes by “grafting from” technique for further addition to a polystyrene-b-polybutadiene-b-polystyrene (SBS) block copolymer in order to obtain self-assembled composites. For modification of nanoparticle surface 3-glycidoxypropyltrimethoxysilane (GPS) was used at first for the later attachment of the 4,4′-azobis(4-cyanopentanoic acid) azo initiator. Fourier-transform infrared spectroscopy confirmed the presence of GPS and PS on the surface of nanoparticles. Atomic force microscopy was used for morphological characterization of SBS/CdSe nanocomposites. Modification of nanoparticles with PS brushes by radical polymerization improved their affinity with PS block and the dispersion of nanoparticles avoiding agglomeration. CdSe nanoparticle size was measured to be around 2 nm by the use of X-ray diffraction and UV–Vis techniques. Optical properties were characterized using fluorescence measurements.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  2. 2.

    Weiss EA, Chiechi RC, Geyer SM, Porter VJ, Bell DC, Bawendi MG, Whitesides GM (2008) Size-dependent charge collection in junctions containing single-size and multi-size arrays of colloidal CdSe quantum dots. J Am Chem Soc 130:74–82

    Article  CAS  Google Scholar 

  3. 3.

    Klimov VI (2007) Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu Rev Phys Chem 58:635–673

    Article  CAS  Google Scholar 

  4. 4.

    Chen X, Hutchinson JL, Dobson PJ, Wakefield G (2008) A one-step aqueous synthetic route to extremely small CdSe nanoparticles. J Colloid Interf Sci 319:140–143

    Article  CAS  Google Scholar 

  5. 5.

    Peponi L, Tercjak A, Gutierrez J, Stadler H, Torre L, Kenny JM, Mondragon I (2008) Self assembling of SBS block copolymers as templates for conductive silver nanocomposites. Macromol Mat Eng 293:568–573

    Article  CAS  Google Scholar 

  6. 6.

    Lo CT, Lee B, Winans RE, Thiyagarajan P (2006) Effect of dispersion of inorganic nanoparticles on the phase behavior of block copolymers in a selective solvent. Macromolecules 39:6318–6320

    Article  Google Scholar 

  7. 7.

    Lin Y, Böker A, He J, Sill K, Xiang H, Abetz C, Li X, Wang J, Balazs A, Russell TP (2005) Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature (London) 434:55–59

    Article  CAS  Google Scholar 

  8. 8.

    Zou S, Hong R, Emrick T, Walker GC (2007) Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces. Langmuir 23:1612–1614

    Article  CAS  Google Scholar 

  9. 9.

    Zhang Q, Xu T, Butterfield D, Misner MJ, Ryu DY, Emrick T, Russel TP (2005) Controlled placement of CdSe nanoparticles in diblock copolymer templates by electrophoretic deposition. Nano Lett 5:357–361

    Article  CAS  Google Scholar 

  10. 10.

    Hadziioannou G, Patel S, Granik S, Tirrell M (1986) Forces between surfaces of block copolymers adsorbed on mica. J Am Chem Soc 108:2869–2876

    Article  CAS  Google Scholar 

  11. 11.

    Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Matyjaszewski K, Tilton RD, Lowry GV (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5:2489–2494

    Article  CAS  Google Scholar 

  12. 12.

    Ladmiral V, Morinaga T, Ohno K, Fukuda T, Tsujii Y (2009) Synthesis of monodisperse zinc sulfide particles grafted with concentrated polystyrene brush by surface-initiated nitroxide-mediated polymerization. Eur Polym J 45:2788–2796

    Article  CAS  Google Scholar 

  13. 13.

    Synytska A, Ionov L, Minko S, Motornov M, Elchorn K, Stamm M, Grundke K (2004) Tuning wettability by controlled roughness and surface modification using core-shell particles. Polym Mater Sci Eng 90:624–625

    CAS  Google Scholar 

  14. 14.

    Wang TL, Yang CH, Shieh YT, Yeh AC (2009) Synthesis of CdSe-poly(N-vinylcarbazole) nanocomposite by atom transfer radical polymerization for potential optoelectronic applications. Macromol Rapid Commun 30:1679–1683

    Article  CAS  Google Scholar 

  15. 15.

    Etxeberria H, Kortaberria G, Zalakain I, Larrañaga A, Mondragon I (2012) Effect of different aqueous synthesis parameters on the size of CdSe nanocrystals. J Mater Sci 47:7167–7174

    Google Scholar 

  16. 16.

    Tsubokawa N, Kogure A, Maruyama K, Sone Y, Shimomura M (1990) Graft polymerization of Vinyl Monomers from inorganic ultrafine particles initiated by azo groups introduced onto the surface. Polym J 22:827–833

    Article  CAS  Google Scholar 

  17. 17.

    Garcia I, Tercjak A, Zafeiropoulos NE, Stamm M, Mondragon I (2007) Self-assembling nanomaterials using magnetic nanoparticles modified with polystyrene brushes. Macromol Rapid Commun 28:2361–2365

    Article  CAS  Google Scholar 

  18. 18.

    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  19. 19.

    Rodriguez-Carvajal (1993) Recent advances in magnetic structure determination by neutron powder diffraction. J Physica B 192:55–69

    Article  CAS  Google Scholar 

  20. 20.

    William Yu W, Lianhua Q, Wenzhuo G, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  Google Scholar 

  21. 21.

    Shyju TS, Anandhi S, Indirajith R, Gopalakrishnan R (2010) Effects of annealing on cadmium selenide nanocrystalline thin films prepared by chemical bath deposition. J Alloys Compounds 506:892–897

    Article  CAS  Google Scholar 

  22. 22.

    Nguyen HQ (2010) Synthesis and optical properties of CdSe nanocrystals and CdSe/ZnScore/shell nanostructures in non-coordinating solvents. Adv Nat Sci: Nanosci Nanotechnol. doi:10.1088/2043-6254/1/2/025004

  23. 23.

    Liu J, Li T, Hu K, Shao G (2009) Preparation and adsorption performances of novel negatively charged hybrid materials. J Appl Polym Sci 112:2179–2184

    Article  CAS  Google Scholar 

  24. 24.

    Sun Y, Ding X, Zheng Z, Cheng X, Hu X, Peng Y (2007) Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles. Eur Polym J 43:762–772

    Article  CAS  Google Scholar 

  25. 25.

    Guo L, Chen S, Chen L (2007) Controllable synthesis of ZnS/PMMA nanocomposite hybrids generated from functionalized ZnS quantum dots nanocrystals. Colloid Polym Sci 285:1593–1600

    Article  CAS  Google Scholar 

  26. 26.

    Xu C, Ohno K, Ladmiral V, Composto RJ (2008) Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 49:3568–3577

    Article  CAS  Google Scholar 

  27. 27.

    Zhang H, Cui Z, Wang Y, Zhang K, Ji X, Lü C, Yang B, Gao M (2003) From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv Mater 15:777–780

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support is gratefully acknowledged from the Basque Country Government in the frame of Grupos Consolidados (IT-365-07), ETORTEK/inanoGUNE (IE09-243), ETORTEK/nanoIKER (IE11-304) and SAIOTEK 2010 (S-PE10UN40) projects, and the Spanish Ministry of Education and Science for MAT2009-06331 project. The authors also thank the technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF). This paper is dedicated in memoriam of Dr. Iñaki Mondragon Egaña.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Kortaberria.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Etxeberria, H., Zalakain, I., Fernandez, R. et al. Controlled placement of polystyrene-grafted CdSe nanoparticles in self-assembled block copolymers. Colloid Polym Sci 291, 633–640 (2013). https://doi.org/10.1007/s00396-012-2765-0

Download citation

Keywords

  • Grafting from
  • CdSe nanoparticles
  • Block copolymer
  • Nanocomposite