Skip to main content
Log in

Contact angle hysteresis of bovine serum albumin (BSA) solution/metal (Au-Cr) coated glass substrate

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Bovine serum albumin (BSA) has an extraordinary property to carry biomolecules. An experimental study on the wettability of BSA is presented in this study. The variations in the surface tension and the equilibrium contact angle with the change in BSA concentration are also reported. The surface tension and the contact angle are measured with pendant and sessile drop techniques, respectively. A nonlinear decrement in the surface tension with the increment in the BSA concentration is observed. An equilibrium contact angle of a BSA solution with particular concentration is determined by studying the hysteresis in the contact angle from dynamic contact angle measurements. The needle-in-drop technique is used to study the hysteresis of the contact angle. It is observed that the obtained surface tension and the equilibrium contact angle vary with the BSA concentration. In this reported study, for the considered combination of the BSA concentration and solid surface, the liquid drop does not recede as the drop volume decreases, which represents nonreceding contact angle condition. The increment in the contact angle with the increment in the BSA concentration is observed. Finally, it is observed that the inclusion of the proteins not only changes the surface tension but also changes the contact angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lim C, Zhang Y (2007) Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron 22(7):1197–1204

    Article  CAS  Google Scholar 

  2. Stone H, Stroock A, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  3. Nguyen N, Werely S (2003) Fundamentals and applications of microfluidics. Artech House, New York

    Google Scholar 

  4. Saha A, Mitra SK (2009) Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow. J Colloid Interface Sci 339(2):461–480

    Article  Google Scholar 

  5. Saha A, Mitra SK, Tweedie M, Roy S, McLaughlin J (2009) Experimental and numerical investigation of capillary flow in su8 and pdms microchannels with integrated pillars. Microfluid Nanofluid 7(4):451–465

    Article  CAS  Google Scholar 

  6. Waghmare P, Mitra SK (2010) Modeling of combined electroosmotic and capillary flow in microchannels. Anal Chim Acta 663(2):117–126

    Article  CAS  Google Scholar 

  7. Waghmare P, Mitra SK (2010) Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels. J Colloid Interface Sci 351(2):561–569

    Article  CAS  Google Scholar 

  8. Waghmare P, Mitra SK (2012) A comprehensive theoretical model of capillary transport in rectangular microchannels. Microfluid Nanofluid 12(1–4):53–63

    Article  CAS  Google Scholar 

  9. Walker G, Beebe D (2002) A passive pumping method for microfluidic devices. Lab Chip - Miniaturisation for Chemistry and Biology 2(3):131–134

    Article  CAS  Google Scholar 

  10. Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, De Rooij N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74(24):6139–6144

    Article  CAS  Google Scholar 

  11. Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip - Miniaturisation for Chemistry and Biology 7(1):119–125

    Article  CAS  Google Scholar 

  12. Theodore P (1995) All about albumin. Elsevier, Burlington

    Google Scholar 

  13. Chen P, Prokop R, Susnar S, Numann A (1998) In: Möbius D, Miller R (eds) Proteins at liquid interfaces, vol 7. Elsevier, Amsterdam

    Google Scholar 

  14. Lam C, Kim N, Hui D, Kwok D, Hair M, Neumann A (2001) The effect of liquid properties to contact angle hysteresis. Colloids Surf, A Physicochem Eng Asp 189(1–3):265–278

    Article  CAS  Google Scholar 

  15. Israelachvili J (1998) Intermolecular and surface forces. Academic, London

    Google Scholar 

  16. Hiemenz P, Rajagopalan R (1997) Principles of colloid and surface chemistry. CRC, Boca Raton

    Google Scholar 

  17. Young T (1805) An essay of the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  18. Bormashenko E (2011) General equation describing wetting of rough surfaces. J Colloid Interface Sci 360(1):317–319

    Article  CAS  Google Scholar 

  19. Kwok D (1998) Contact angles and surface energetics. PhD thesis, University of Toronto

  20. Waghmare P, Mitra SK (2010) Contact angle hysteresis of microbead suspensions. Langmuir 26(22):17082–17089

    Article  CAS  Google Scholar 

  21. Extrand C (2006) Hysteresis in contact angle measurements. Encyclopedia of Surface and Colloid Science 1(1):2876–2891

    Google Scholar 

  22. Chau T (2009) A review of techniques for measurement of contact angles and their applicability on mineral surfaces. Miner Eng 22(3):213–219

    Article  CAS  Google Scholar 

  23. Hamaburg (2004) DSA 100 drop shape analysis, softaware manual. Krüss GmbH Hamaburg

  24. Girault H, Schiffrin D, Smith B (1984) The measurement of interfacial tension of pendant drops using a video image profile digitizer. J Colloid Interface Sci 101(1):257–266

    Article  CAS  Google Scholar 

  25. Wong T, Chen T, Shen X, Ho C (2011) Nanochromatography driven by the coffee ring effect. Anal Chem 83(6):1871–1873

    Article  CAS  Google Scholar 

  26. Hayes R, Robinson A, Ralston J (1994) A Wilhelmy technique for the rapid assessment of solid wetting dynamics. Langmuir 10(8):2850–2852

    Article  CAS  Google Scholar 

  27. Gu Y (2006) Contact angle measurement techniques for determination of wettability. Encycl Surf Colloid Sci 1(1):1525–1539

    Google Scholar 

  28. Macdougall G, Ockrent C (1942) Surface energy relations in liquid/solid systems. I. The adhesion of liquids to solids and a new method of determining the surface tension of liquids. Proc Soc A 180(981):151–173

    Article  CAS  Google Scholar 

  29. de Gennes P, Brochard-Wyart F, Qúeré D (2003) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, Berlin

    Google Scholar 

  30. Marmur A (2009) A guide to the equilibrium contact angles maze, In: Contact angle, wettability and adhesion, Edited by Kash Mittal, vol. 6. Hotei, Leiden, pp 3–18

  31. Lam C, Wu R, Li D, Hair M, Neumann A (2002) Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Adv Colloid Interface Sci 96(1–3):169–191

    Article  CAS  Google Scholar 

  32. Tadmor R (2004) Line energy and the relation between advancing, receding, and young contact angles. Langmuir 20(18):7659–7664

    Article  CAS  Google Scholar 

  33. Lam C, Ko R, Yu L, Ng A, Li D, Hair M, Neumann A (2001) Dynamic cycling contact angle measurements: study of advancing and receding contact angles. J Colloid Interface Sci 243(1):208–218

    Article  CAS  Google Scholar 

  34. Li D, Neumann A (1992) Equation of state for interfacial-tension bands of solid-liquid system. Adv Colloid Interface Sci 39(C):299–345

    Article  CAS  Google Scholar 

  35. Li D, Neumann A (1992) Contact angles on hydrophobic solid-surfaces and their interpretation. J Colloid Interface Sci 148(1):190–200

    Article  CAS  Google Scholar 

  36. Kwok D, Neumann A (1998) Contact angles and surface energetics. In: Lagaly G (ed) Horizon 2000—aspects of colloid and interface science at the turn of the millennium. Prog Colloid & Polym Sci 109:170–184

Download references

Acknowledgement

The authors gratefully acknowledge the funding provided by Alberta Ingenuity, now part of Alberta Innovates-Technology Futures from the Province of Alberta in the form of a scholarship provided to P.R.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta K. Mitra.

Additional information

This article is part of the Topical Collection on Contact Angle Hysteresis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waghmare, P.R., Mitra, S.K. Contact angle hysteresis of bovine serum albumin (BSA) solution/metal (Au-Cr) coated glass substrate. Colloid Polym Sci 291, 375–381 (2013). https://doi.org/10.1007/s00396-012-2756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2756-1

Keywords

Navigation