Skip to main content
Log in

Condensation-induced wetting state and contact angle hysteresis on superhydrophobic lotus leaves

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate how condensed moisture droplets wet classical superhydrophobic lotus leaf surfaces and analyze the mechanism that causes the increase of contact angle hysteresis. Superhydrophobic lotus leaves in nature show amazing self-cleaning property with high water contact angle (>150°) and low contact angle hysteresis (usually <10°), causing droplets to roll off at low inclination angles, in accordance with classical Cassie–Baxter wetting state. However, when superhydrophobic lotus leaves are wetted with condensation, the condensed water droplets are sticky and exhibit higher contact angle hysteresis (40–50°). Compared with a fully wetted sessile droplet (classical Wenzel state) on the lotus leaves, the condensed water droplet still has relatively large contact angle (>145°), suggesting that the wetting state deviates from a fully wetted Wenzel state. When the condensed water droplets are subjected to evaporation at room conditions, a thin water film is observed bridging over the micropillar structures of the lotus leaves. This causes the dew to stick to the surface. This result suggests that the condensed moisture does not uniformly wet the superhydrophobic lotus leaf surfaces. Instead, there occurs a mixed wetting state, between classical Cassie–Baxter and Wenzel states that causes a distinct increase of contact angle hysteresis. It is also observed that the mixed Cassie–Baxter/Wenzel state can be restored to the original Cassie–Baxter state by applying ultrasonic vibration which supplies energy to overcome the energy barrier for the wetting transition. In contrast, when the surface is fully wetted (classical Wenzel state), such restoration is not observed with ultrasonic vibration. The results reveal that although the superhydrophobic lotus leaves are susceptible to being wetted by condensing moisture, the configured wetting state is intermediate between the classical Cassie–Baxter and Wenzel states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carré A, Mittal KL (eds) (2009) Superhydrophobic surfaces. VSP/Brill, Leiden

    Google Scholar 

  2. Li X, Reinhoudt D, Crego-Calama M (2007) Chem Soc Rev 36:1350–1368

    Article  Google Scholar 

  3. Choi C-H, Kim C-J (2006) Phys Rev Lett 96:066001

    Article  Google Scholar 

  4. Lee C, Choi C-H, Kim C-J (2008) Phys Rev Lett 101:064501

    Article  Google Scholar 

  5. Choi C-H, Ulmanella U, Kim J, Ho C-M, Kim C-J (2006) Phys Fluids 18:087105

    Article  Google Scholar 

  6. Tsai YT, Xu W, Yang E-H, Choi C-H (2010) Nanosci Nanotechnol Lett 2:150–156

    Article  CAS  Google Scholar 

  7. Xu W, Leeladhar R, Tsai Y, Yang E-H, Choi C-H (2011) Appl Phys Lett 98:073101

    Article  Google Scholar 

  8. Barthlott W, Neinhuis C (1997) Planta 202:1–8

    Article  CAS  Google Scholar 

  9. Roach P, Shirtcliffe NJ, Newton MI (2008) Soft Matter 4:224–240

    Article  CAS  Google Scholar 

  10. Cheng YT, Rodak DE (2005) Appl Phys Lett 86:144101

    Article  Google Scholar 

  11. Liu Y, Chen X, Xin JH (2009) J Mater Chem 19:5602–5611

    Article  CAS  Google Scholar 

  12. Rijke AM (1968) J Exp Biol 48:185–189

    Google Scholar 

  13. Marmur A (2009) In: Mittal KL (ed) Contact angle, wettability and adhesion, vol 6. VSP/Brill, Leiden, pp 3–18

    Google Scholar 

  14. Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  15. Cassie ABD, Baxter S (1945) Nature 155:21–22

    Article  CAS  Google Scholar 

  16. Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Langmuir 16:5754–5760

    Article  CAS  Google Scholar 

  17. Marmur A (2003) Langmuir 19:8343–8348

    Article  CAS  Google Scholar 

  18. Bormashenko E (2011) J Colloid Interface Sci 360:316–317

    Article  Google Scholar 

  19. Bhushan B, Nosonovsky M (2010) Phil Trans R Soc A 368:4713–4728

    Article  CAS  Google Scholar 

  20. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Langmuir 24:4114–4119

    Article  CAS  Google Scholar 

  21. Koishia T, Yasuokac K, Fujikawab S, Ebisuzakid T, Zeng XC (2009) Proc Natl Acad Sci (USA) 106:8435–8440

    Google Scholar 

  22. Barbieri L, Wagner E, Hoffmann P (2007) Langmuir 23:1723–1734

    Article  CAS  Google Scholar 

  23. Choi C-H, Kim C-J (2009) Langmuir 25:7561–7567

    Article  CAS  Google Scholar 

  24. Zheng QS, Yu Y, Zhao ZH (2005) Langmuir 21:12207–12212

    Article  CAS  Google Scholar 

  25. Deng T, Varanasi KK, Hsu M, Bhate N, Keimel C, Stein J, Blohm M (2009) Appl Phys Lett 94:133109

    Article  Google Scholar 

  26. Reyssat M, Yeomans JM, Quéré D (2008) Europhys Lett 81:26006

    Article  Google Scholar 

  27. Chen CH, Cai Q, Tsai C, Chen CL, Xiong G, Yu Y, Ren Z (2007) Appl Phys Lett 90:173108

    Article  Google Scholar 

  28. Jung YC, Bhushan B (2008) J Microsc 229:127–140

    Article  CAS  Google Scholar 

  29. Narhe RD, Beysens DA (2006) Europhys Lett 75:98–104

    Article  CAS  Google Scholar 

  30. Wier KA, McCarthy TJ (2006) Langmuir 22:2433–2436

    Article  CAS  Google Scholar 

  31. Boreyko JB, Chen CH (2009) Phys Rev Lett 103:174502

    Article  Google Scholar 

  32. Ming W, Wu D, van Benthem R, de With G (2005) Nano Lett 5:2298–2301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hwan Choi.

Additional information

This article is part of the Topical Collection on Contact Angle Hysteresis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Choi, CH. Condensation-induced wetting state and contact angle hysteresis on superhydrophobic lotus leaves. Colloid Polym Sci 291, 437–445 (2013). https://doi.org/10.1007/s00396-012-2751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2751-6

Keywords

Navigation