Skip to main content
Log in

From micro to nano reentrant structures: hysteresis on superomniphobic surfaces

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The paper reports on the wetting characterization of two surfaces presenting reentrant shapes at micro- and nanoscale using low surface tension liquids (down to 28 mN/m). On the one hand, mushroom-like microstructures are fabricated by molding poly(dimethylsiloxane) (PDMS) onto a patterned sacrificial photoresist bilayer. On the other hand, zinc oxide nanostructures (ZnO NS) are synthesized by easy and fast chemical bath deposition technique. The PDMS and ZnO NS surfaces are then chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane in vapor phase. Both PDMS and ZnO NS surfaces exhibit a large apparent contact angle (>150°) and contact angle hysteresis varying from 50° to a quasi-null value. This large discrepancy can be ascribed to the length scale and topography of the structures, promoting either a vertical imbibition or a lateral spreading within the roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  2. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546

    Article  CAS  Google Scholar 

  3. Shirtcliffe NJ, McHale G, Atherton S, Newton MI (2010) An introduction to superhydrophobicity. Adv Colloid Interface Sci 161:124–138

    Article  CAS  Google Scholar 

  4. Nosonovsky M, Bhushan B (2009) Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr Opin Colloid Interface Sci 14:270–280

    Article  CAS  Google Scholar 

  5. Marmur A (2006) Underwater superhydrophobicity: theoretical feasibility. Langmuir 22:1400–1402

    Article  CAS  Google Scholar 

  6. Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54:137–178

    Article  CAS  Google Scholar 

  7. Otten A, Herminghaus S (2004) How plants keep dry: a physicist’s point of view. Langmuir 20:2405–2408

    Article  CAS  Google Scholar 

  8. Krumpfer J, McCarthy T (2010) Contact angle hysteresis: a different view and a trivial recipe for low hysteresis hydrophobic surfaces. Faraday Discuss 146:103–111

    Article  CAS  Google Scholar 

  9. Reyssat M, Richard D, Clanet C, Quere D (2010) Dynamical superhydrophobicity. Faraday Discuss 146:19–33

    Article  CAS  Google Scholar 

  10. Lapierre F, Brunet P, Coffinier Y, Thomy V, Blossey R, Boukherroub R (2010) Electrowetting and droplet impalement experiments on superhydrophobic multiscale structures. Faraday Discuss 146:125–139

    Article  CAS  Google Scholar 

  11. Kumari N, Garimella SV (2011) Electrowetting-induced dewetting transitions on superhydrophobic surfaces. Langmuir 27:10342–10346

    Article  CAS  Google Scholar 

  12. Boreyko JB, Baker CH, Poley CR, Chen CH (2011) Wetting and dewetting transitions on hierarchical superhydrophobic surfaces. Langmuir 27:7502–7509

    Article  CAS  Google Scholar 

  13. Zhang J, Han Y (2009) "Dual-parallel-channel" shape-gradient surfaces: toward oriented and reversible movement of water droplets. Langmuir 25:14195–14199

    Article  CAS  Google Scholar 

  14. Lapierre F, Piret G, Drobecq H, Melnyk O, Coffinier Y, Thomy V, Boukherroub R (2011) High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowires-based digital microfluidic device. Lab Chip 11:1620–1628

    Article  CAS  Google Scholar 

  15. Lee C, Kim CJ (2011) Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Phys Rev Lett 106:014502

    Article  Google Scholar 

  16. Whyman G, Bormashenko E (2011) How to make the Cassie wetting state stable? Langmuir 27:8171–8176

    Article  CAS  Google Scholar 

  17. Tuteja A, Choi W, Ma ML, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318:1618–1622

    Article  CAS  Google Scholar 

  18. Bormashenko E (2009) A variational approach to wetting of composite surfaces: is wetting of composite surfaces a one-dimensional or two-dimensional phenomenon? Langmuir 25:10451–10454

    Article  CAS  Google Scholar 

  19. Im M, Im H, Lee JH, Yoon JB, Choi YK (2010) A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter 6:1401–1404

    Article  CAS  Google Scholar 

  20. Wang DA, Wang XL, Liu XJE, Zhou F (2010) Engineering a titanium surface with controllable oleophobicity and switchable oil adhesion. J Phys Chem C 114:9938–9944

    Article  CAS  Google Scholar 

  21. Cao LL, Gao D (2010) Transparent superhydrophobic and highly oleophobic coatings. Faraday Discuss 146:57–65

    Article  CAS  Google Scholar 

  22. Aulin C, Yun SH, Wagberg L, Lindstrom T (2009) Design of highly oleophobic cellulose surfaces from structured silicon templates. ACS Appl Mater Interf 1:2443–2452

    Article  CAS  Google Scholar 

  23. Nguyen TPN, Brunet P, Coffinier Y, Boukherroub R (2010) Quantitative testing of robustness on superomniphobic surfaces by drop impact. Langmuir 26:18369–18373

    Article  CAS  Google Scholar 

  24. Dufour R, Harnois M, Coffinier Y, Thomy V, Boukherroub R, Senez V (2010) Engineering sticky superomniphobic surfaces on transparent and flexible PDMS substrate. Langmuir 26:17242–17247

    Article  CAS  Google Scholar 

  25. Perry G, Coffinier Y, Thomy V, Boukherroub R (2012) Sliding droplets on superomniphobic zinc oxide nanostructures. Langmuir 28:389–395

    Article  CAS  Google Scholar 

  26. Kokotov M, Hodes G (2009) Reliable chemical bath deposition of ZnO films with controllable morphology from ethanolamine-based solutions using KMnO4 substrate activation. J Mater Chem 19:3847–3854

    Article  CAS  Google Scholar 

  27. Patankar NA (2010) Hysteresis with regard to Cassie and Wenzel states on superhydrophobic surfaces. Langmuir 26:7498–7503

    Article  CAS  Google Scholar 

  28. Srinivasan S, McKinley GH, Cohen RE (2011) Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces. Langmuir 27:13582–13589

    Article  CAS  Google Scholar 

  29. Dufour R, Harnois M, Thomy V, Boukherroub R, Senez V (2011) Contact angle hysteresis origins: investigation on super-omniphobic surfaces. Soft Matter 7:9380–9387

    Article  CAS  Google Scholar 

  30. Jokinen V, Sainiemi L, Franssila S (2011) Controlled lateral spreading and pinning of oil droplets based on topography and chemical patterning. Langmuir 27:7314–7320

    Article  CAS  Google Scholar 

  31. Wenzel RN (1949) Surface roughness and contact angle. J Phys Colloid Chem 53:1466–1467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the European Regional Development Fund for financial support under the INTERREG IVa FW1.1.9 "PLASMOBIO" project and the European Community Seventh Framework Programme (FP7/20072013) under grant agreement no. 22724. This work was supported by Nord-Pas-de-Calais Region through the 2008-2013 CIA State Region Planning contract and by the Ministry of Defense. The authors thank Mr. Christophe Boyaval for SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Thomy.

Additional information

Renaud Dufour and Guillaume Perry contributed equally to the article and share first co-authorship.

This article is part of the Topical Collection on Contact Angle Hysteresis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufour, R., Perry, G., Harnois, M. et al. From micro to nano reentrant structures: hysteresis on superomniphobic surfaces. Colloid Polym Sci 291, 409–415 (2013). https://doi.org/10.1007/s00396-012-2750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2750-7

Keywords

Navigation