Skip to main content
Log in

Brill transition of nylon-6 in electrospun nanofibers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Electrospun nylon-6 fibers were prepared from its polyelectrolyte solution in formic acid with different concentrtaions. In situ Fourier transform infrared (FTIR), wide-angle X-ray diffraction and small-angle X-ray scattering (SAXS) were performed on the nylon-6 fibers heated to various temperatures until melting. For comparison, stepwise annealing of the solution-cast film having exclusively the α-form was also carried out to elucidate the structural evolution. Our results showed that Brill transition in the electrospun fibers occurs at a lower temperature than that in the solution-cast film due to the crystal size difference. Differential scanning calorimetry heating traces on the as-spun fibers exhibited a unique crystalline phase with a melting temperature of ∼235 °C, higher than the equilibrium melting temperature of nylon-6. The content of high melting temperature (HMT) phase increased with increasing nylon-6 concentration; a maximum of 30 % of the fiber crystallinity was reached for fibers obtained from the 22 wt.% solution regardless of the heating rates used. Based on the SAXS and FTIR results, we speculated that the HMT phase is associated with thick α-form crystals developed from the highly oriented nylon-6 chains that are preserved in the skin layer of the as-spun fibers. A plausible mechanism for the formation of the skin/core fiber morphology during electrospinning was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Murthy NS (2006) Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. J Polym Sci Polym Phys 44:1763

    Article  CAS  Google Scholar 

  2. Liu X, Wu Q (2002) Phase transition in nylon 6/clay nanocomposites on annealing. Polymer 43:1933

    Article  CAS  Google Scholar 

  3. Ramesh C, Gowd EB (2001) High-temperature X-ray diffraction studies on the crystalline transitions in the alpha- and gamma-forms of nylon-6. Macromolecules 34:3308

    Article  CAS  Google Scholar 

  4. Murthy NS, Curran SA, Aharoni SM, Minor H (1991) Premelting crystalline relaxations and phase-transitions in nylon-6 and 6,6. Macromolecules 24:3215

    Article  CAS  Google Scholar 

  5. Vasanthan N, Murthy NS, Bray RG (1998) Investigation of Brill transition in nylon 6 and nylon 6,6 by infrared spectroscopy. Macromolecules 31:8433

    Article  CAS  Google Scholar 

  6. Fong H, Liu W, Wang CS, Vaia RA (2002) Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer 43:775

    Article  CAS  Google Scholar 

  7. Dersch R, Liu T, Schaper AK, Greiner A, Wendoref JH (2003) Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci Polym Chem 41:545

    Article  CAS  Google Scholar 

  8. Lee KH, Kim KW, Pesapane A, Kim HY, Rabolt JF (2008) Polarized FT-IR study of macroscopically oriented electrospun nylon-6 nanofibers. Macromolecules 41:1494

    Article  CAS  Google Scholar 

  9. Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, Fong H (2007) Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules 40:6283

    Article  CAS  Google Scholar 

  10. Giller CB, Chase DB, Rabolt JF, Snively CM (2010) Effect of solvent evaporation rate on the crystalline state of electrospun nylon 6. Polymer 51:4225

    Article  CAS  Google Scholar 

  11. Tsou SY, Lin HS, Wang C (2011) Studies on the electrospun nylon 6 nanofibers from polyelectrolyte solutions: 1. Effects of solution concentration and temperature. Polymer 52:3127

    Article  CAS  Google Scholar 

  12. Todoki M, Kawaguchi T (1977) Melting of constrained drawn nylon-6 yarns. J Polym Sci Polym Phys 15:1507

    CAS  Google Scholar 

  13. Kojima Y, Matsuoka T, Takahashi H, Kurauchi T (1994) Crystallization of nylon 6–clay hybrid by annealing under elevated pressures. J Appl Polym Sci 51:683

    Article  CAS  Google Scholar 

  14. Medellin-Rodriguez FJ, Burger C, Hsiao BS, Chu B, Vaia R, Phillips S (2001) Time-resolved shear behavior of end-tethered nylon 6–clay nanocomposites followed by non-isothermal crystallization. Polymer 42:9015

    Article  CAS  Google Scholar 

  15. Liu TX, Liu ZH, Ma KX, Shen L, Zeng KY, He CB (2003) Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. Compo Sci Technol 63:331

    Article  CAS  Google Scholar 

  16. Winberg P, Eldrup M, Pedersen NJ, van Es MA, Maurer FHJ (2005) Free volume sizes in intercalated polyamide 6/clay nanocomposites. Polymer 46:8239

    Article  CAS  Google Scholar 

  17. Yu J, Tonpheng B, Andersson O (2010) High-pressure-induced microstructural evolution and enhancement of thermal properties of nylon-6. Macromolecules 43:10512

    Article  CAS  Google Scholar 

  18. Jeng US, Su CH, Su CJ, Liao KF, Chuang WT, Lai YH, Chang JW, Chen UJ, Huang YS, Lee MT, Yu KL, Lin JM, Liu DG, Chang CF, Liu CY, Chang CH, Liang KS (2010) A small/wide-angle X-ray scattering instrument for structural characterization of air–liquid interfaces, thin films and bulk specimens. J Appl Cryst 43:110

    Article  CAS  Google Scholar 

  19. McKee MG, Wilkes GL, Colby RH, Long TE (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37:1760

    Article  CAS  Google Scholar 

  20. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer 46:3372

    Article  CAS  Google Scholar 

  21. McKee MG, Hunley MT, Layman JM, Long TE (2006) Solution rheological behavior and electrospinning of cationic polyelectrolytes. Macromolecules 39:575

    Article  CAS  Google Scholar 

  22. Wunderlich B (1973) Macromolecular physics, vol 1. Academic, New York, p 389

    Google Scholar 

  23. Ibanes C, de Boissieu M, David L, Seguela R (2006) High temperature behaviour of the crystalline phases in unfilled and clay-filled nylon 6 fibers. Polymer 47:5071

    Article  CAS  Google Scholar 

  24. Murthy NS, Wang ZG, Hsiao BS (1999) Interactions between crystalline and amorphous domains in semicrystalline polymers: small-angle X-ray scattering studies of the Brill transition in nylon 6,6. Macromolecules 32:5594

    Article  CAS  Google Scholar 

  25. Ramesh C, Keller A, Eltink SJEA (1994) Studies on the crystallization and melting of nylon-6,6. 1. The dependence of the Brill transition on the crystallization temperature. Polymer 35:2483

    Article  CAS  Google Scholar 

  26. Yang X, Tan S, Li G, Zhou E (2001) Dependence of the Brill transition on the crystal size of nylon 10 10. Macromolecules 34:5936

    Article  CAS  Google Scholar 

  27. Tosaka M, Yamaguchi K, Tsuji M (2010) Latent orientation in the skin layer of electrospun isotactic polystyrene ultrafine fibers. Polymer 51:547

    Article  CAS  Google Scholar 

  28. Czaputa K, Brenn G, Meile W (2008) Concentration profiles in drying cylindrical filaments. Heat Mass Transf 45:227

    Article  CAS  Google Scholar 

  29. Sano Y (2001) Dry behavior of acetate filament in dry spinning. Drying Technol 19:1335

    Article  CAS  Google Scholar 

  30. Koombhongse S, Liu W, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Polym Phys 39:2598

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Council of Taiwan (NSC 98-2221-E-006-005-MY3, NSC96-2918-I-006-011), National Synchrotron Radiation Research Center (NSRRC, 2009-2-047-5), Taiwan Textile Research Institute (TTRI), and Industrial Technology Research Institute (ITRI). The assistance of X-ray scattering experiments from Drs. U-Ser Jeng and Chun-Jen Su in NSRRC is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Tsou, SY. & Lin, HS. Brill transition of nylon-6 in electrospun nanofibers. Colloid Polym Sci 290, 1799–1809 (2012). https://doi.org/10.1007/s00396-012-2724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2724-9

Keywords

Navigation