Skip to main content
Log in

Architecture-adapted raspberry-like gold@polyaniline particles: facile synthesis and catalytic activity

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A facile route was introduced to generate uniform raspberry-like gold@polyaniline (AuNP@PANI) particles in the presence of sodium dodecylsulfate (SDS). The surfactant SDS played an important role in both generating a uniform structure and stabilizing these particles. Upon addition of low-molecular weight organics, the regulation on the gold architecture was realized from a compact to stretched configuration owing to the change of surface tension and a possible swell process. The catalytic activity of the raspberry-like AuNP@PANI was investigated using the reduction of 4-nitrophenol by NaBH4 and electrocatalytic oxidation of glucose as model reactions. It was found that the AuNP@PANI particles with the most stretched architecture presented the highest catalytic activity owing to their largest contact surface to the reactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713–3735. doi:10.1021/cr1002529

    Article  CAS  Google Scholar 

  2. Daniel M-C, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  Google Scholar 

  3. Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110:5332–5365. doi:10.1021/cr900335q

    Article  CAS  Google Scholar 

  4. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111:3858–3887. doi:10.1021/cr1002547

    Article  CAS  Google Scholar 

  5. Yuan Q, Wang X (2010) Aqueous-based route toward noble metal nanocrystals: morphology-controlled synthesis and their applications. Nanoscale 2:2328–2335. doi:10.1039/c0nr00342e

    Article  CAS  Google Scholar 

  6. Guo S, Dong S, Wang E (2008) Monodisperse raspberry-like gold submicrometer spheres: large-scale synthesis and interface assembling for colloid sphere array. Cryst Growth Des 8:3581–3585. doi:10.1021/cg800023d

    Article  CAS  Google Scholar 

  7. Shen Q, Jiang L, Zhang H, Min Q, Hou W, Zhu J-J (2008) Three-dimensional dendritic pt nanostructures: sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385–16392. doi:10.1021/jp8060043

    Article  CAS  Google Scholar 

  8. Kawasaki JK, Arnold CB (2011) Synthesis of platinum dendrites and nanowires via directed electrochemical nanowire assembly. Nano Lett 11:781–785. doi:10.1021/nl1039956

    Article  CAS  Google Scholar 

  9. Mallick K, Mondal K, Witcomb M, Scurrell M (2008) Gas phase hydrogenation reaction using a ‘metal nanoparticle–polymer’ composite catalyst. J Mater Sci 43:6289–6295. doi:10.1007/s10853-008-2892-7

    Article  CAS  Google Scholar 

  10. Hosseini M, Momeni M, Faraji M (2010) Electrochemical fabrication of polyaniline films containing gold nanoparticles deposited on titanium electrode for electro-oxidation of ascorbic acid. J Mater Sci 45:2365–2371. doi:10.1007/s10853-009-4202-4

    Article  CAS  Google Scholar 

  11. Sajanlal PR, Sreeprasad TS, Nair AS, Pradeep T (2008) Wires, plates, flowers, needles, and core-shells: diverse nanostructures of gold using polyaniline templates. Langmuir 24:4607–4614. doi:10.1021/la703593c

    Article  CAS  Google Scholar 

  12. Shiigi H, Yamamoto Y, Yoshi N, Nakao H, Nagaoka T (2006) One-step preparation of positively-charged gold nanoraspberry. Chem Commun 42:4288–4290. doi:10.1039/b610085f

    Article  Google Scholar 

  13. Kun H et al (2006) One-step synthesis of 3D dendritic gold/polypyrrole nanocomposites via a self-assembly method. Nanotechnology 17:283. doi:10.1088/0957-4484/17/1/048

    Article  Google Scholar 

  14. Mallick K, Witcomb MJ, Dinsmore A, Scurrell MS (2005) Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route. Langmuir 21:7964–7967. doi:10.1021/la050534j

    Article  CAS  Google Scholar 

  15. Sharma M, Ambolikar A, Aggarwal S (2011) In situ synthesis of gold–polyaniline composite in nanopores of polycarbonate membrane. J Mater Sci 46:5715–5722. doi:10.1007/s10853-011-5525-5

    Article  CAS  Google Scholar 

  16. Pan M, Xing S, Sun T, Zhou W, Sindoro M, Teo HH, Yan Q, Chen H (2010) 3D dendritic gold nanostructures: seeded growth of a multi-generation fractal architecture. Chem Commun 46:7112–7114. doi:10.1039/c0cc00820f

    Article  CAS  Google Scholar 

  17. Song Y, Yang Y, Medforth CJ, Pereira E, Singh AK, Xu H, Jiang Y, Brinker CJ, van Swol F, Shelnutt JA (2003) Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures. J Am Chem Soc 126:635–645. doi:10.1021/ja037474t

    Article  Google Scholar 

  18. Gooding JJ, Praig VG, Hall EAH (1998) Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers. Anal Chem 70:2396–2402. doi:10.1021/ac971035t

    Article  CAS  Google Scholar 

  19. Xing S, Tan LH, Chen T, Yang Y, Chen H (2009) Facile fabrication of triple-layer (Au@Ag)@polypyrrole core-shell and (Au@H2O)@polypyrrole yolk-shell nanostructures. Chem Commun 45:1653–1654. doi:10.1039/b821125f

    Article  Google Scholar 

  20. Xing S, Tan LH, Yang M, Pan M, Lv Y, Tang Q, Yang Y, Chen H (2009) Highly controlled core/shell structures: Tunable conductive polymer shells on gold nanoparticles and nanochains. J Mater Chem 19:3286–3291. doi:10.1039/b900993k

    Article  CAS  Google Scholar 

  21. MacDiarmid AG, Epstein AJ (1994) The concept of secondary doping as applied to polyaniline. Synth Met 65:103–116. doi:10.1016/0379-6779(94)90171-6

    Article  CAS  Google Scholar 

  22. Xing S, Feng Y, Tay YY, Chen T, Xu J, Pan M, He J, Hng HH, Yan Q, Chen H (2010) Reducing the symmetry of bimetallic Au@Ag nanoparticles by exploiting eccentric polymer shells. J Am Chem Soc 132:9537–9539. doi:10.1021/ja102591z

    Article  CAS  Google Scholar 

  23. Zeng J, Zhang Q, Chen J, Xia Y (2009) A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett 10:30–35. doi:10.1021/nl903062e

    Article  Google Scholar 

  24. Granot E, Katz E, Basnar B, Willner I (2005) Enhanced bioelectrocatalysis using Au-nanoparticle/polyaniline hybrid systems in thin films and microstructured rods assembled on electrodes. Chem Mater 17:4600–4609. doi:10.1021/cm050193v

    Article  CAS  Google Scholar 

  25. Wang J, Gong J, Xiong Y, Yang J, Gao Y, Liu Y, Lu X, Tang Z (2011) Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chem Commun 47:6894–6896. doi:10.1039/c1cc11784j

    Article  CAS  Google Scholar 

  26. Tominaga M, Shimazoe T, Nagashima M, Taniguchi I (2005) Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochem Commun 7:189–193. doi:10.1016/j.elecom.2004.12.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant no. 21103018) and Jilin Provincial Science and Technology Development Foundation (grant no. 201101010) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangxi Xing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

2,660 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Liu, X., Yu, Q. et al. Architecture-adapted raspberry-like gold@polyaniline particles: facile synthesis and catalytic activity. Colloid Polym Sci 290, 1759–1764 (2012). https://doi.org/10.1007/s00396-012-2715-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2715-x

Keywords

Navigation