Skip to main content
Log in

Interactions of two homologues of cationic surface active ionic liquids with sodium carboxymethylcellulose in aqueous solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In the preceding paper of this series, we studied the interactions of copolymers with the ionic liquids, 1-alkyl-3-methylimidazolium bromide (C n mimBr, n = 8, 10, 12, 14, 16) and N-alkyl-N-methylpyrrolidinium bromide (C n MPB, n = 12, 14, 16). An obvious difference was detected between the interaction mechanism and the alkyl chain length of the surfactant. In the present study, we performed a systematic study on the interaction of sodium carboxymethylcellulose (NaCMC) with ionic liquids in aqueous solution by isothermal titration microcalorimetry (ITC), conductivity, turbidity, and dynamic light scattering (DLS) measurements. The existence of electrostatic attraction between NaCMC and ILs could increase the complexity of these systems. The results show that the monomers of C8mimBr can bind to the NaCMC chains and form free surfactant micelles in the solution, while no micelle-like C8mimBr/NaCMC cluster is detected. For other surfactants, the formation of surfactant/NaCMC clusters in the solution is driven by electrostatic and hydrophobic interactions, which could be divided into two types. One type is the polymer-induced surfactant/NaCMC complexes that form in the solution for the surfactant of C n mimBr (n = 10, 12, 14) or C n MPB (n = 12, 14). The other type is that the surfactant-induced surfactant/NaCMC complexes come into being for the surfactant of C16mimBr or C16MPB. Finally, the different modes of complex formation proposed have a good interpretation of the experiment results, unraveling the details of the effect of surfactant alkyl chain length and headgroup on the surfactant–NaCMC interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li YJ, Dubin PL (1994) Structure and flow in surfactant solutions, New York, 320-326

  2. Kwak JCT (1998) Polymer–surfactant systems. Dekker, New York, pp 193–238

    Google Scholar 

  3. Bain CD, Claesson PM, Langevin D, Meszaros R, Nylander T, Stubenrauch C, Titmuss S, Klitzing R (2010) Adv Colloid Interface Sci 155:32

    Article  CAS  Google Scholar 

  4. Just EK, Majewicz TG (1985) Encyclopedia of polymer science and engineering. Wiley, New York, 226

    Google Scholar 

  5. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Chem Rev 109:6712

    Article  CAS  Google Scholar 

  6. Trabelsi S, Langevin D (2007) Langmuir 23:1248

    Article  CAS  Google Scholar 

  7. Chakraborty T, Chakraborty I, Ghosh S (2006) Langmuir 22:9905

    Article  CAS  Google Scholar 

  8. Wu Q, Du M, Shang Y, Zhou JP, Zheng Q (2009) Colloid Surf A 332:13

    Article  CAS  Google Scholar 

  9. Wang XY, Li YJ, Li JX, Wang JB, Wang YL, Guo ZX, Yan HK (2005) J Phys Chem B 109:10807

    Article  CAS  Google Scholar 

  10. Trabelsi S, Raspaud E, Langevin D (2007) Langmuir 23:10053

    Article  CAS  Google Scholar 

  11. Dong B, Zhao XY, Zheng LQ, Zhang J, Li N, Inoue T (2008) Colloid Surf A 317:666

    Article  CAS  Google Scholar 

  12. Dong B, Li N, Zheng LQ, Yu L, Inoue T (2007) Langmuir 23:4178

    Article  CAS  Google Scholar 

  13. Zhao MW, Zheng LQ (2011) Phys Chem Chem Phys 13:1332

    Article  CAS  Google Scholar 

  14. Liu J, Zhao MW, Zhang Q, Sun DZ, Wei XL, Zheng LQ (2011) Colloid Polym Sci 289:1711

    Article  CAS  Google Scholar 

  15. Bai GY, Santos L, Nichifor M, Lopes A, Bastos M (2004) J Phys Chem B 108:405

    Article  CAS  Google Scholar 

  16. Dai S, Tam KC, Jenkins RD (2001) J Phys Chem B 105:10189

    Article  CAS  Google Scholar 

  17. Yang JS, Zhao JY, Fang Y (2008) Carbohydr Res 343:719

    Article  CAS  Google Scholar 

  18. Wang H, Wang YL, Yan HK, Zhang J, Thomas RK (2006) Langmuir 22:1526

    Article  CAS  Google Scholar 

  19. Bonnaud M, Weiss J, McClements DJ (2010) J Agric Food Chem 58:9770

    Article  CAS  Google Scholar 

  20. Wang C, Tam KC (2004) J Phys Chem B 108:8976

    Article  CAS  Google Scholar 

  21. Baker GA, Pandey S, Pandey S, Baker SN (2004) Analyst 129:890

    Article  CAS  Google Scholar 

  22. Monteux C, Williams CE, Bergeron V (2004) Langmuir 20:5367

    Article  CAS  Google Scholar 

  23. Niemiec A, Loh W (2008) J Phys Chem B 112:727

    Article  CAS  Google Scholar 

  24. Chu DY, Thomas JK (1986) J Am Chem Soc 108:6270

    Article  CAS  Google Scholar 

  25. Karukstis KK, McDonough JR (2005) Langmuir 21:5716

    Article  CAS  Google Scholar 

  26. Vanyúr R, Biczók L, Miskolczy Z (2007) Colloid Surf A 299:256

    Article  Google Scholar 

  27. Inoue T, Ebina H, Dong B, Zheng LQ (2007) J Colloid Interface Sci 314:236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 50972080) and the National Basic Research Program (2009CB930101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaojie Liu or Liqiang Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Zhang, Q., Huo, Y. et al. Interactions of two homologues of cationic surface active ionic liquids with sodium carboxymethylcellulose in aqueous solution. Colloid Polym Sci 290, 1721–1730 (2012). https://doi.org/10.1007/s00396-012-2690-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2690-2

Keywords

Navigation