Skip to main content
Log in

Morphology of cold-crystallized polyamide 6

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The structure of cold-crystallized polyamide 6 (PA 6) has been analyzed by wide-angle X-ray scattering, atomic force microscopy, and polarizing optical microscopy. It has been found that ordering of initially fully amorphous and glassy PA 6 on slow heating to temperatures higher than the glass transition temperature results in formation of spatially non-organized short lamellae/nodules with a size depending on the maximum annealing temperature. In contrast, melt crystallization at low supercooling is connected with formation of spherulites and laterally extended lamellae. The observed experimental results demonstrate that crystals of qualitatively different morphology and higher-order organization can be generated by variation of the pathway of crystallization. It is assumed that the different structures obtained in melt- and cold-crystallized samples are related to heterogeneous and homogeneous nucleation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Illers KH, Haberkorn H (1971) Schmelzverhalten, Struktur, und Kristallinität von 6-Polyamid. Makromol Chem 142:31–67

    Article  CAS  Google Scholar 

  2. Kyotani M, Mitsuhashi S (1972) Studies on crystalline forms of nylon 6. II. Crystallization from the melt. J Polym Sci Part A-2 10:1497–1508

    Article  CAS  Google Scholar 

  3. Kyotani M (1975) Studies on crystalline forms of nylon 6. III. Crystallization from the glassy state. J Macromol Sci Phys B11:509–525

    CAS  Google Scholar 

  4. Brucato V, Piccarolo S, La Carruba V (2002) An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates. Chem Eng Sci 57:4129–4143

    Article  CAS  Google Scholar 

  5. Cavallo D, Gardella L, Alfonso GC, Portale G, Balzano L, Androsch R (2011) Effect of cooling rate on the crystal/mesophase polymorphism of polyamide 6. Colloid Polym Sci 289:1073–1079

    Article  CAS  Google Scholar 

  6. Ziabicki A (1959) Über die mesomorphe β-Form von Polycapronamid und ihre Umwandlung in die kristalline Form α. Kolloid-Zeitschrift 167:132–141

    Article  CAS  Google Scholar 

  7. Auriemma F, Petraccone V, Parravicini L, Corradini P (1997) Mesomorphic form (β) of nylon 6. Macromolecules 30:7554–7559

    Article  CAS  Google Scholar 

  8. Simak P (1973) Spektroskopische Untersuchungen der kristallinen Modifikationen von Polyamid-6. Makromol Chem 28:75–85

    CAS  Google Scholar 

  9. Fichera A, Malta V, Marega C, Zannetti R (1988) Temperature dependence of the polymorphous phases of nylon 6. Makromol Chem 189:1561–1567

    Article  CAS  Google Scholar 

  10. Roldan LG, Kaufman HS (1963) Crystallization of nylon 6. J Polym Sci Polym Lett 1:603–608

    Article  CAS  Google Scholar 

  11. Arimoto H (1964) α–γ Transition of nylon 6. J Polym Sci Part A 2:2283–2295

    CAS  Google Scholar 

  12. Murthy NS, Hatfield GR, Glans JH (1990) X-ray diffraction and nuclear magnetic resonance studies of nylon 6/I2/KI complexes and their transformation into the γ crystalline phase. Macromolecules 23:1342–1346

    Article  CAS  Google Scholar 

  13. Holmes DR, Bunn CW, Smith DJ (1955) The crystal structure of polycaproamide: nylon 6. J Polym Sci 17:159–177

    Article  CAS  Google Scholar 

  14. Auriemma F, De Rosa C, Corradini P (2005) Solid mesophases in semicrystalline polymers: structural analysis by diffraction techniques. Adv Polym Sci 181:1–74

    Article  CAS  Google Scholar 

  15. Androsch R, Stolp M, Radusch HJ (1996) Crystallization of amorphous polyamides from the glassy state. Acta Polym 47:99–104

    Article  CAS  Google Scholar 

  16. Hoffmann JD, Davis GT, Lauritzen JI (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay HB (ed) Treatise on solid state chemistry, crystalline and noncrystalline solids, vol 3. Plenum, New York

    Google Scholar 

  17. Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(ε-caprolactone). Polymer 52:1983–1997

    Article  CAS  Google Scholar 

  18. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 53:277–282

    Article  CAS  Google Scholar 

  19. Wunderlich B (1976) Macromolecular physics vol 2, crystal nucleation, growth, annealing. Academic, New York

    Google Scholar 

  20. De Santis F, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031

    Article  Google Scholar 

  21. Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun 28:875–881

    Article  CAS  Google Scholar 

  22. Mileva D, Androsch R (2012) Effect of co-unit type in random propylene copolymers on the kinetics of mesophase formation and crystallization. Colloid Polym Sci 290:465–471

    Article  CAS  Google Scholar 

  23. Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML, Schick C, Wunderlich B (2006) Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci Polym Phys 44:1364–1377

    Article  CAS  Google Scholar 

  24. Kolesov I, Mileva D, Androsch R, Schick C (2011) Structure formation of polyamide 6 from the glassy state by fast scanning chip calorimetry. Polymer 52:5156–5165

    Article  CAS  Google Scholar 

  25. Ogawa T, Miyaji H, Asai K (1985) Nodular structure of polypropylene. J Phys Soc Jpn 54:3668–3670

    Article  CAS  Google Scholar 

  26. Zia Q, Androsch R, Radusch HJ, Piccarolo S (2006) Morphology, reorganization, and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163–8172

    Article  CAS  Google Scholar 

  27. Zia Q, Radusch HJ, Androsch R (2007) Direct analysis of annealing of nodular crystals in isotactic polypropylene by atomic force microscopy, and its correlation with calorimetric data. Polymer 48:3504–3511

    Article  CAS  Google Scholar 

  28. Hsu CC, Geil PH, Miyaji H, Asai K (1986) Structure and properties of polypropylene crystallized from the glassy state. J Polym Sci Polym Phys 24:2379–2401

    Article  CAS  Google Scholar 

  29. Zia Q, Radusch HJ, Androsch R (2009) Deformation behavior of isotactic polypropylene crystallized via a mesophase. Polym Bull 63:755–771

    Article  CAS  Google Scholar 

  30. Zia Q, Androsch R, Radusch HJ (2010) Effect of the structure at the micrometer and nanometer scales on the light transmission of isotactic polypropylene. J Appl Polym Sci 117:1013–1020

    Article  CAS  Google Scholar 

  31. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522:36–45

    Article  CAS  Google Scholar 

  32. Russell DP, Beaumont PWR (1980) Structure and properties of injection-moulded nylon-6. Part 1 Structure and morphology of nylon-6. J Mat Sci 15:197–207

    Article  CAS  Google Scholar 

  33. Schaper A, Hirte R, Ruscher C, Hillebrand R, Walenta E (1986) The electron microscope characterization of the fine structure of nylon 6: I. The supermolecular structure in melt-cast, isotropic bulk material. Colloid Polym Sci 264:649–658

    Article  CAS  Google Scholar 

  34. Zia Q, Androsch R, Radusch HJ, Ingolic E (2008) Crystal morphology of rapidly cooled isotactic polypropylene: a comparative study by TEM and AFM. Polym Bull 60:791–798

    Article  CAS  Google Scholar 

  35. Zia Q, Androsch R (2009) Effect of atomic force microscope tip geometry on the evaluation of the crystal size of semicrystalline polymers. J Meas Sci Technol 20:097003, 4 pp

    Article  Google Scholar 

  36. Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids 169:211–266

    Article  CAS  Google Scholar 

  37. Hendus H, Illers KH, Simak P (1969) Kristallisation von amorphem 6-Polyamid im Glasübergangsbereich. Kolloid-Zeitschr Zeitschr Polym 235:1244–1246

    Article  CAS  Google Scholar 

  38. Salmerón Sánchez M, Mathot V, Vanden Poel G, Groeninckx G, Bruls W (2006) Crystallization of polyamide confined in sub-micrometer droplets dispersed in a molten polyethylene matrix. J Polym Sci Polym Phys 44:815–825

    Article  Google Scholar 

  39. Androsch R (2008) In situ atomic force microscopy of the mesomorphic–monoclinic phase transition in isotactic polypropylene. Macromolecules 41:531–533

    Article  Google Scholar 

  40. Androsch R, Di Lorenzo ML, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51:4639–4662

    Article  CAS  Google Scholar 

  41. Wu TM, Liao CS (2000) Polymorphism in nylon 6/clay nanocomposites. Macromol Chem Phys 201:2820–2825

    Article  CAS  Google Scholar 

  42. Lincoln DM, Vaia RA, Krishnamoorti R (2004) Isothermal crystallization of nylon 6/montmorillonite nanocomposites. Macromolecules 37:4554–4561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Androsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mileva, D., Kolesov, I. & Androsch, R. Morphology of cold-crystallized polyamide 6. Colloid Polym Sci 290, 971–978 (2012). https://doi.org/10.1007/s00396-012-2657-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2657-3

Keywords

Navigation