Colloid and Polymer Science

, Volume 290, Issue 14, pp 1413–1421 | Cite as

Hydroxyl functional polyester dendrimers as stabilizing agent for preparation of colloidal silver particles—a study in respect to antimicrobial properties and toxicity against human cells

  • Boris Mahltig
  • Nicolas Cheval
  • Vladimir Astachov
  • Michael Malkoch
  • Maria I. Montanez
  • Hajo Haase
  • Amir Fahmi
Original Contribution


The presented study concerns the preparation and investigation of silver particles in presence of hydroxylated polyester dendrimers used as stabilizing agent. Altogether a full series of water soluble and aliphatic bis-MPA dendrimers from first to fifth generation was used as to stabilize silver nanoparticles in situ. A special focus is set on the biological properties. The antibacterial properties of the dendrimer stabilized silver particles are tested against Escherichia coli and the toxicity against human cells is tested with the human epithelial cell line A549. Under the chosen testing arrangement, it was observed that the silver particles contain a significant antibacterial effect against E. coli. Silver particles stabilized in situ with dendrimers of higher generation seem to contain a stronger antibacterial property. No toxicity against human cells was observed for the silver particles even in case of the highest investigated silver concentration. Altogether the here prepared and investigated silver particles could offer a great potential for application as antibacterial agent with low human toxicity.


Dendrimer Silver Human toxicity Antibacterial 



The authors are very grateful to G. Engelhardt and S. Hebel (both RWTH Aachen) and B. Tatlises (Niederrhein University for Applied Sciences) for the expert technical assistance. For supporting dendrimers and chemicals, the authors owe many thanks to M.V. Walter (KTH) and the company Polymer Factory.


  1. 1.
    Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K (2000) Antibacterial silver-containing silica glass prepared by sol–gel method. Biomaterials 21:393–398CrossRefGoogle Scholar
  2. 2.
    Saengkiettiyut K, Rattanawaleedirojn P, Sangsuk S (2008) A study on antimicrobial efficacy of nano silver containing textile. CMU J Nat Sci 7:33–36Google Scholar
  3. 3.
    Tomsic B, Simoncic B, Orel B, Cerne L, Forte Tavcer P, Zorko M, Jerman I, Vilcnik A, Kovac J (2008) Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol-Gel Sci Technol 47:44–57CrossRefGoogle Scholar
  4. 4.
    Vilcnik A, Jerman I, Vuk AS, Kozelj M, Orel B, Tomsic B, Simoncic B, Kovac J (2009) Structural properties and antibacterial effects of hydrophobic and oleophobic sol–gel coatings for cotton fabrics. Langmuir 25:5869–5880CrossRefGoogle Scholar
  5. 5.
    Irwin P, Martin J, Nguyen L-H, He Y, Gehring A, Chen C-Y (2010) Antimicrobial activity of spherical silver nanoparticles prepared using a biocompatible macromolecular capping agent: evidence for induction of a greatly prolonged bacterial lag phase. J Nanobiotechnol 8:34–46CrossRefGoogle Scholar
  6. 6.
    Wright JB, Lam K, Hansen D, Burell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27:344–350CrossRefGoogle Scholar
  7. 7.
    Butterly A, Schmidt U, Wiener-Kronish J (2010) Methicillin-resistant Staphylococcus aureus colonization, its relationship to nosocomial infection, and efficacy of control methods. Anesthesiology 113:1453–1459CrossRefGoogle Scholar
  8. 8.
    Yao Y, Ohko Y, Sekiguchi Y, Fujishima A, Kubota Y (2008) Self–sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. J Biomed Mater Res B Appl Biomater 85B:453–460CrossRefGoogle Scholar
  9. 9.
    Nice R (1983) Process for coating a sterilizing filter material with silver and product formed thereby. US Patent, US4407865Google Scholar
  10. 10.
    Blaker JJ, Nazhat SN, Boccaccini AR (2004) Development and characterization of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials 25:1319–1329CrossRefGoogle Scholar
  11. 11.
    Yin HQ, Langford R, Burrell RE (1999) Comparative evaluation of the antimicrobial activity of ACTICOAT antimicrobial barrier dressing. J Burn Care Res 20:195–200Google Scholar
  12. 12.
    Haug S, Roll A, Schmid-Grendelmeier P, Johansen P, Wüthrich B, Kündig TM, Senti G (2006) Coated textiles in the treatment of atopic dermatitis. Curr Probl Dermatol 33:144–151CrossRefGoogle Scholar
  13. 13.
    Cha K, Hong H-W, Choi Y-G, Lee MJ, Park JH, Chae H-K, Ryu G, Myung H (2008) Comparison of acute responses of mice livers to short-term exposure to nano-sized or miroc-sized silver particles. Biotechnol Lett 30:1893–1899CrossRefGoogle Scholar
  14. 14.
    Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Meent DVD, Dekkers S, Jong WHD, Zijverden MV, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138CrossRefGoogle Scholar
  15. 15.
    Kocareva T, Grozdanov I, Pejova B (2001) Ag and AgO thin film formation in Ag+-triethanolamine solutions. Mater Lett 47:319–323CrossRefGoogle Scholar
  16. 16.
    Mahltig B, Gutmann E, Meyer DC, Reibold M, Bund A, Böttcher H (2009) Thermal preparation and stabilization of crystalline silver particles in SiO2-based coating solutions. J Sol–Gel Sci Technol 49:202–208CrossRefGoogle Scholar
  17. 17.
    Guzmán MG, Dille J, Godet S (2008) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Proc World Acad Sci Eng Technol 33:367–374Google Scholar
  18. 18.
    Zhang W, Qiao X, Chen J, Chen Q (2008) Self-assembly and controlled synthesis of silver nanoparticles in SDS quaternary microemulsion. Mater Lett 62:1689–1692CrossRefGoogle Scholar
  19. 19.
    Sun H, Gao Z, Yang L, Gao L, Lv X (2010) Synthesis and characterization of novel four-arm star PDMAEMA-stabilized colloidal silver nanoparticles. Colloid Polym Sci 288:1713–1722CrossRefGoogle Scholar
  20. 20.
    Zhang Z, Zhao B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121:105–110CrossRefGoogle Scholar
  21. 21.
    Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94:449–453CrossRefGoogle Scholar
  22. 22.
    Mahltig B, Gutmann E, Meyer DC, Reibold M, Böttcher H (2009) Thermal preparation and stabilization of crystalline silver particles in SiO2-based coating solutions. J Sol–Gel Sci Technol 51:204–214CrossRefGoogle Scholar
  23. 23.
    Mahltig B, Reibold M, Gutmann E, Textor T, Gutmann J, Haufe H, Haase H (2011) Preparation of silver nanoparticles suitable for textile finishing processes to produce textiles with strong antibacterial properties against different bacteria types. Z Naturforsch B 66B:905–916CrossRefGoogle Scholar
  24. 24.
    Samanta S, Sarkar P, Pyne S, Sahoo GP, Misra A (2012) Synthesis of silver nanodiscs and triangular nanoplates in PVP-matrix: photophysical study and simulation of UV–vis extinction spectra using DDA method. J Mol Liq 165:21–26CrossRefGoogle Scholar
  25. 25.
    Li Z, Gu A, Guan M, Zhou Q, Shang T (2010) Large-scale synthesis of silver nanowires and platinum nanotubes. Colloid Polym Sci 288:1185–1191CrossRefGoogle Scholar
  26. 26.
    Noritomi H, Igari N, Kagitani K, Umezawa Y, Muratsubaki Y, Kato S (2010) Synthesis and size control of silver nanoparticles using reverse micelles of sucrose fatty acid esters. Colloid Polym Sci 288:887–891CrossRefGoogle Scholar
  27. 27.
    Niskanen J, Shan J, Tenhu H, Jiang H, Kauppinen E, Barranco V, Picó F, Yliniemi K, Kontturi K (2010) Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid Polym Sci 288:543–553CrossRefGoogle Scholar
  28. 28.
    Chang C-P, Tseng C-C, Ou J-L, Hwu W-H, Ger M-D (2010) Growth mechanism of gold nanoparticles decorated on polystyrene spheres via self-regulated reductionGoogle Scholar
  29. 29.
    Hussain I, Brust M, Papworth AJ, Cooper AI (2003) Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19:4831–4835CrossRefGoogle Scholar
  30. 30.
    Balogh L, Tomalia DA (1998) Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J Am Chem Soc 120:7355–7356CrossRefGoogle Scholar
  31. 31.
    Wie X, Zhu B, Xu Y (2005) Preparation and stability of copper particles formed using the template of hyperbranced poly(amine-ester). Colloid Polym Sci 284:102–107CrossRefGoogle Scholar
  32. 32.
    Sun X, Dong S, Wang E (2004) One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 37:7105–7108CrossRefGoogle Scholar
  33. 33.
    Wales CH, Berger J, Blass S, Crooks RM, Asherie N (2011) Quasi-elastic light scattering of platinum dendrimer-encapsulated nanoparticles. Langmuir 27:4104–4109CrossRefGoogle Scholar
  34. 34.
    Carino EV, Crooks RM (2011) Characterization of Pt@Cu core@shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition. Langmuir 27:4227–4235CrossRefGoogle Scholar
  35. 35.
    Balogh L, Valluzzi R, Laverdure KS, Gido SP, Hagnauer GL, Tomalia DA (1999) Formation of silver and gold dendrimer nanocomposites. J Nanoparticle Res 1:353–368CrossRefGoogle Scholar
  36. 36.
    Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1:18–21CrossRefGoogle Scholar
  37. 37.
    Balogh L, Hagnauer GL, Tomalia DA, McManus AT (2001) Antimicrobial dendrimer nanocomposites and a method of treating wounds. USPatent US6224898B1Google Scholar
  38. 38.
    Lesniak W, Bielinska AU, Sun K, Janczak KW, Shi X, Baker JR, Balogh LP (2005) Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 5:2123–2130CrossRefGoogle Scholar
  39. 39.
    Malkoch M, Malmström E, Hult A (2002) Rapid and efficient synthesis of aliphatic ester dendrons and dendrimers. Macromolecules 35:8307–8314CrossRefGoogle Scholar
  40. 40.
    Feliu N, Walter MV, Montanez MI, Kunzmann A, Hult A, Nyström A, Malkoch M, Fadeel B (2012) Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers. Biomaterials 33:1970–1981CrossRefGoogle Scholar
  41. 41.
    Montanez MI, Campos LM, Antoni P, Hed Y, Walter MV, Krull BT, Khan A, Hult A, Hawker CJ, Malkoch M (2010) Accelerated growth of dendrimers via thiol-ene and esterefication reactions. Macromolecules 43:6004–6013CrossRefGoogle Scholar
  42. 42.
    Fahmi A, Appelhans D, Cheval N, Pietsch T, Bellmann C, Gindy N, Voit B (2011) Hybrid nanoalloy: nanofibers fabricated by self-assembling dendrimers mediate in situ cdse quantum dots and their metallization with discrete gold nanoparticles. Adv Mater 23:3289–3293CrossRefGoogle Scholar
  43. 43.
    Kaltenberg J, Plum LM, Ober-Blöbaum JL, Hönscheid A, Rink L, Haase H (2010) Zinc signals promote IL-2-dependent proliferation of T cells. Eur J Immunol 40:1496–1503CrossRefGoogle Scholar
  44. 44.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRefGoogle Scholar
  45. 45.
    Creighton JA, Eadon DG (1991) Ultraviolet–visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87:3881–3891CrossRefGoogle Scholar
  46. 46.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, HeidelbergGoogle Scholar
  47. 47.
    Salz D, Lamber R, Wark M, Baalmann A, Jaeger N (1999) Metal clusters in plasma polymer matrices. Part II. Silver clusters. Phys Chem Chem Phys 1:4447–4451CrossRefGoogle Scholar
  48. 48.
    Zhou L, Gao C, Hu X, Xu W (2011) General avenue to multifunctional aqueous nanocrystals stabilized by hyperbranched polyglycerol. Chem Mater 23:1461–1470Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Boris Mahltig
    • 1
  • Nicolas Cheval
    • 2
  • Vladimir Astachov
    • 2
  • Michael Malkoch
    • 3
  • Maria I. Montanez
    • 3
  • Hajo Haase
    • 4
  • Amir Fahmi
    • 2
    • 5
  1. 1.Faculty of Textile and Clothing TechnologyNiederrhein University of Applied SciencesMönchengladbachGermany
  2. 2.Department of Mechanical, Materials and Manufacturing EngineeringUniversity of NottinghamNottinghamUK
  3. 3.School of Chemical Science and Engineering, Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSweden
  4. 4.Institute of Immunology, Medical FacultyRWTH Aachen UniversityAachenGermany
  5. 5.Faculty of Technology and BionicsRhein-Waal University of Applied SciencesEmmerich am RheinGermany

Personalised recommendations