Abstract
This review summarizes recent research dedicated to hybrid colloids combining inorganic nanoparticles and cross-linked polymer networks. We discuss aspects of synthesis, characterization, and application of systems with different morphologies and properties. Due to the large number of works in the field of composite materials, we focus on materials with responsive polymer components, which are dispersed in aqueous media.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346
Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102
Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870
Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791
Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825
Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604
Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167
Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675
Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225
Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381
Della Gaspera E, Karg M, Baldauf J, Jasieniak J, Maggioni G, Martucci A (2011) Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study. Langmuir 27:13739–13747
Pazos-Pérez N, Ni W, Schweikart A, Álvarez-Puebla RA, Fery A, Liz-Marzán LM (2010) Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chem Sci 1:174–178
Rodríguez-Lorenzo L, Álvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán LM, García de Abajo FJ (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131:4616–4618
Campbell, CT, Parker SC, Starr, DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298:811–814
Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744
Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-Irradiation. J Am Chem Soc 127:3928–3934
Carregal-Romero S, Pérez-Juste J, Hervés P, Liz-Marzán LM, Mulvaney P (2010) Colloidal gold catalyzed reduction of ferrocyanate (iii) by borohydride ions: a model system for redox catalysis. Langmuir 26:1271–1277
Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458
Zhao J, Zhang J, Jiang C, Bohnenberger J, Basché T, Mews A (2004) Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered light-emitting diodes. J Appl Phys 96:3206–3210
Li YQ, Rizzo A, Cinogolani R, Gigli G (2006) Bright white-light-emitting device from ternary nanocrystal composites. Adv Mater 18:2545–2548
Caruge J-M, Halpert JE, Bulović V, Bawendi MG (2006) NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices. Nano Lett 6:2991–2994
Anikeeva PO, Halpert JE, Bawendi MG, Bulović V (2009) Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett 9:2532–2536
Mashford BS, Nguyen TL, Wilson GJ, Mulvaney P (2010) All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing. J Mater Chem 20:167–172
Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310:462–465
Anderson IE, Breeze AJ, Olson JD, Yang L, Sahoo Y, Carter SA (2009) All-inorganic spin-cast nanoparticle solar cells with nonselective electrodes. Appl Phys Lett 94:063101
Jasieniak J, MacDonald BI, Watkins SE, Mulvaney P (2011) Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly. Nano Lett 11:2856–2864
Si S, Dinda E, Mandal TK (2007) In situ synthesis of gold and silver nanoparticles by using redox-active amphiphiles and their phase transfer to organic solvents. Chem Eur J 13:9850–9861
Misra TK, Chen T-S, Liu CY (2006) Phase transfer of gold nanoparticles from aqueous to organic solution containing resorcinarene. J Colloid Interface Sci 297:584–588
Mayya KS, Caruso F (2003) Phase transfer of surface-modified gold nanoparticles by hydrophobization with alkylamines. Langmuir, 19:6987–6993
Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M (2003) Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. J Colloid Interface Sci 264:396–401
Kumar A, Joshi HM, Mandale AB, Srivastava R, Adyanthaya SD, Pasricha R, Sastry M (2004) Phase transfer of platinum nanoparticles from aqueous to organic solutions using fatty amine molecules. J Chem Sci 116(5):293–300
Karg M, Schelero N, Oppel C, Gradzielski M, Hellweg T, Klitzing RV (2011) Versatile phase transfer of gold nanoparticles from aqueous media to different organic media. Chem Eur J 17:4648–4654
Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142
Karg M, Hellweg T (2009) Smart inorganic/organic hybrid microgels: synthesis and characterisation. J Mater Chem 19:8714–8727
Karg M, Hellweg T (2009) New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr Opin Colloid Interface Sci 14:438–450
Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285:953–966
Pich AZ, Adler HJP (2007) Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym Int 56:291–307
Lu Y, Ballauff M (2011) Thermosensitive core-shell microgels: from colloidal model systems to nanoreactors. Prog Polym Sci 36:767–792
Agrawal M, Gupta S, Stamm M (2011) Recent developments in fabrication and applications of colloid-based composite particles. J Mater Chem, 21:615–627
Wu C, Zhou S, Au-yeung SCF, Jiang S (1996) Volume phase transition of spherical microgel particles. Angew Makromol Chem 240:123–136
Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33
Senff H, Richtering W (2000) Influence od cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid Polym Sci 278:830–840
Kratz K, Hellweg T, Eimer W (2001) Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42:6631–6639
Stieger M, Pedersen JS, Lindner P, Richtering W (2004) Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Langmuir 20:7283–7292
Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823
Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016
Fernández-Nieves A, Fernández-Barbero A, Vincent B, de las Nieves FJ (2000) Charge controlled swelling of microgel particles. Macromolecules 33:2114–2118
Kratz K, Hellweg T, Eimer W (2000) Influence od charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylicacid) microgels. Colloids Surf A 170:137–149
Hoare T, Pelton R (2004) Highly ph and temperature responsive microgels functionalized with vinylacetic acid. Macromol 37:2544–2550
Shibayama M, Ikkai F, Inamoto S, Nomura S, Han CC (1996) pH and salt concentration dependence of the microstructure of poly(N-isopropylacrylamide-co-acrylic acid) gels. J Chem Phys 105(10):4358–4366
Fernández-Nieves A, Márquez M (2005) Electrophoresis of ionic microgel particles: from charged hard spheres to polyelectrolyte-like behavior. J Chem Phys 122(084702):084702
Karg M, Pastoriza-Santos I, Rodriguez-González B, von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behaviorof PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24:6300–6306
Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379
Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition. J Chem Phys 97(9):6829–6841
Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin, Germany
Karg M, Jaber S, Hellweg T, Mulvaney P (2011) Surface plasmon spectroscopy of gold-poly-N-isopropylacrylamide core-shell particles. Langmuir 27(2):820–827
Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126:7908–7914
Pich A, Karak A, Lu Y, Ghosh AK, Adler H-JP (2006) Hybrid microgels containing gold nanoparticles. e-Polymers (018):ISSN 1618–7229
Suzuki D, Kawaguchi H (2006) Hybrid microgels with reversibly changeable multiple brilliant color. Langmuir 22:3818–3822
Contreras-Cáceres R, Sanchez-Iglesias A, Karg M, Pastoriza-Santos I, Feéez-Juste J, Pacifico J, Hellweg T, Fernández-Barbero A, Liz-Marzán LM (2009) Encapsulation and growth of gold nanoparticles in thermoresponsive microgels. Adv Mater 20(9):1666–1670
Contreras-Cáceres R, Pacifico J, Pastoriza-Santos I, Pérez-Juste J, Fernández-Barbero A, Liz-Marzán LM (2009) Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth. Adv Funct Mater 19:3070–3076
Jaber S, Karg M, Morfa A, Mulvaney P (2011) 2D assembly of gold-PNIPAM core-shell nanocrystals. Phys Chem Chem Phys 13:5576–5578
Karg M, Hellweg T, Mulvaney P (2011) Self-assembly of tunable nanocrystal superlattices using poly-(NIPAM) Spacers. Adv Funct Mater 21:4668–4676
Fernández-López C, Pérez-Balado C, Pérez-Juste J, Pastoriza-Santos I, de Lera ÁR, Liz-Marzán LM (2012) A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. Soft Matter 8:4165–4170. doi:10.1039/C1SM06396K
Karg M, Pastoriza-Santos I, Pérez-Juste J, Hellweg T, Liz-Marzán LM (2007) Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 3(7):1222–1229
Karg M, Lu Y, Carbó-Argibay E, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, Hellweg T (2009) Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and ph-tunable plasmon resonance. Langmuir 25:3163–3167
Jones CD, Lyon LA (2003) Photothermal patterning of microgel/gold nanoparticle composite colloidal crystals J Am Chem Soc 125:460–465
Jones CD, Serpe MJ, Schroeder L, Lyon LA (2003) Microlens formation in microgel/gold colloid composite materials via photothermal patterning. J Am Chem Soc 125:5292–5293
Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126:15938–15939
Das M, Sanson N, Fava D, Kumacheva E (2007) Microgels loaded with gold nanorods: photothermally triggered volume transitionsunder physiological conditions. Langmuir 23(1):196–201
Rodríguez-Fernández J, Fedoruk M, Hrelescu C, Lutich AA, Feldmann J (2011) Triggering the volume phase transition of core-shell Au nanorod-microgel nanocomposites with light. Nanotechnology 22:245708
Hormeńo S, Bastús NG, Pietsch A, Weller H, Arias-Gonzalez JR, Juárez BH (2011) Plasmon–exciton interactions on single thermoresponsive platforms demonstrated by optical tweezers. Nano Letters 11:4742–4747
Álvarez-Puebla RA, Contreras-Cáceres R, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2008) Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem Int Ed 47:1–7
Contreras-Cáceres R, Pastoriza-Santos I, Álvarez-Puebla RA, Pérez-Juste J, Fernández-Barbero A, Liz-Marzán LM (2010) Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. Chem Eur J 16:9462–9467
Contreras-Cáceres R, Abalde-Cela S, Guardia-Girós P, Fernández-Barbero A, Pérez-Juste J, Álvarez-Puebla RA, Liz-Marzán LM (2011) Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 27:4520–4525
Jańczewski D, Tomczak N, Han MY, Vansco GJ (2009) Introduction of quantum dots into PNIPAM microspheres by precipitation polymerization above LCST. Eur Polym J 45:1912–1917
Agrawal M, Rubio-Retama J, Zafeiropoulos NE, Gaponik N, Gupta S, Cimrova V, Lesnyak V, López-Cabarcos E, Tzavalas S, Rojas-Reyna R, Eychmüller A, Stamm M (2008) Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels. Langmuir 24:9820–9824
Wu W, Zhou T, Aiello M, Zhou S (2010) Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic-inorganic hybrid microgels. Biosens Bioelectron 25:2603–2610
Lu Y, Mei Y, Ballauff M, Drechsler M (2006) Thermoresponsive core-shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110:3930–3937
Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45:813–816
Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069
Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M (2009) Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J Mater Chem 19:3955–3961
Carregal-Romero S, Buurma NJ, Pérez-Juste J, Hervés P, Liz-Marzán LM (2010) Catalysis by Au@pNIPAM nanocomposites: effect of the cross-linking density. Chem Mater 22:3051–3059
Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J (2010) In situ growth of catalytic active Au-Pt bimetallic nanorods in thermoresponsive core-shell microgels. ACS Nano 4(12):7078–7086
Zhang F, Wang C-C (2009) Preparation of P(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles. Langmuir 25:8255–8262
Sánchez-Iglesias A, Grzelczak M, Rodríguez-González B, Guardia-Girós P, Pastoriza-Santos I, Pérez-Juste J, Prato J, Liz-Marzán LM (2009) Synthesis of multifunctional composite microgels via in situ Ni growth on pNIPAM-coated Au nanoparticles. ACS Nano 3:3184–3190
Pich A, Bhattacharya S, Lu Y, Boyko V, Adler HJP (2004) Temperature-sensitive hybrid microgels with magnetic properties. Langmuir 20:10706–10711
Bhattacharya S, Eckert F, Boyko V, Pich A (2007) Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small 3:650–657
Dagallier C, Dietsch H, Schurtenberger P, Scheffold F (2010) Thermoresponsive hybrid microgel particles with intrinsic optical and magnetic anisotropy. Soft Matter 6:2174–2177
Laurenti M, Guardia P, Contreras-Cáceres R, Pérez-Juste J, Fernandez-Barbero A, Lopez-Cabarcos E, Rubio-Retama J (2011) Synthesis of thermosensitive microgels with a tunable magnetic core. Langmuir 27:10484–10491
Acknowledgements
The author likes to acknowledge T. Hellweg from the University of Bielefeld (Germany), P. Mulvaney from the University of Melbourne (Australia), and L.M. Liz.-Marzán from the University of Vigo (Spain) for the introduction to this fascinating field of research and the support during the last years.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karg, M. Multifunctional inorganic/organic hybrid microgels. Colloid Polym Sci 290, 673–688 (2012). https://doi.org/10.1007/s00396-012-2644-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00396-012-2644-8