Skip to main content
Log in

Multifunctional inorganic/organic hybrid microgels

An overview of recent developments in synthesis, characterization, and application

  • Invited Review
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This review summarizes recent research dedicated to hybrid colloids combining inorganic nanoparticles and cross-linked polymer networks. We discuss aspects of synthesis, characterization, and application of systems with different morphologies and properties. Due to the large number of works in the field of composite materials, we focus on materials with responsive polymer components, which are dispersed in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  2. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  3. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  4. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  CAS  Google Scholar 

  5. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825

    Article  CAS  Google Scholar 

  6. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  7. Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167

    Article  Google Scholar 

  8. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  9. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  Google Scholar 

  10. Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381

    Article  CAS  Google Scholar 

  11. Della Gaspera E, Karg M, Baldauf J, Jasieniak J, Maggioni G, Martucci A (2011) Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study. Langmuir 27:13739–13747

    Article  Google Scholar 

  12. Pazos-Pérez N, Ni W, Schweikart A, Álvarez-Puebla RA, Fery A, Liz-Marzán LM (2010) Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chem Sci 1:174–178

    Article  Google Scholar 

  13. Rodríguez-Lorenzo L, Álvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán LM, García de Abajo FJ (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131:4616–4618

    Article  Google Scholar 

  14. Campbell, CT, Parker SC, Starr, DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298:811–814

    Article  CAS  Google Scholar 

  15. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  16. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-Irradiation. J Am Chem Soc 127:3928–3934

    Article  CAS  Google Scholar 

  17. Carregal-Romero S, Pérez-Juste J, Hervés P, Liz-Marzán LM, Mulvaney P (2010) Colloidal gold catalyzed reduction of ferrocyanate (iii) by borohydride ions: a model system for redox catalysis. Langmuir 26:1271–1277

    Article  CAS  Google Scholar 

  18. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  CAS  Google Scholar 

  19. Zhao J, Zhang J, Jiang C, Bohnenberger J, Basché T, Mews A (2004) Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered light-emitting diodes. J Appl Phys 96:3206–3210

    Article  CAS  Google Scholar 

  20. Li YQ, Rizzo A, Cinogolani R, Gigli G (2006) Bright white-light-emitting device from ternary nanocrystal composites. Adv Mater 18:2545–2548

    Article  CAS  Google Scholar 

  21. Caruge J-M, Halpert JE, Bulović V, Bawendi MG (2006) NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices. Nano Lett 6:2991–2994

    Article  CAS  Google Scholar 

  22. Anikeeva PO, Halpert JE, Bawendi MG, Bulović V (2009) Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett 9:2532–2536

    Article  CAS  Google Scholar 

  23. Mashford BS, Nguyen TL, Wilson GJ, Mulvaney P (2010) All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing. J Mater Chem 20:167–172

    Article  CAS  Google Scholar 

  24. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310:462–465

    Article  CAS  Google Scholar 

  25. Anderson IE, Breeze AJ, Olson JD, Yang L, Sahoo Y, Carter SA (2009) All-inorganic spin-cast nanoparticle solar cells with nonselective electrodes. Appl Phys Lett 94:063101

    Article  Google Scholar 

  26. Jasieniak J, MacDonald BI, Watkins SE, Mulvaney P (2011) Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly. Nano Lett 11:2856–2864

    Article  CAS  Google Scholar 

  27. Si S, Dinda E, Mandal TK (2007) In situ synthesis of gold and silver nanoparticles by using redox-active amphiphiles and their phase transfer to organic solvents. Chem Eur J 13:9850–9861

    Article  CAS  Google Scholar 

  28. Misra TK, Chen T-S, Liu CY (2006) Phase transfer of gold nanoparticles from aqueous to organic solution containing resorcinarene. J Colloid Interface Sci 297:584–588

    Article  CAS  Google Scholar 

  29. Mayya KS, Caruso F (2003) Phase transfer of surface-modified gold nanoparticles by hydrophobization with alkylamines. Langmuir, 19:6987–6993

    Article  CAS  Google Scholar 

  30. Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M (2003) Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. J Colloid Interface Sci 264:396–401

    Article  CAS  Google Scholar 

  31. Kumar A, Joshi HM, Mandale AB, Srivastava R, Adyanthaya SD, Pasricha R, Sastry M (2004) Phase transfer of platinum nanoparticles from aqueous to organic solutions using fatty amine molecules. J Chem Sci 116(5):293–300

    Article  CAS  Google Scholar 

  32. Karg M, Schelero N, Oppel C, Gradzielski M, Hellweg T, Klitzing RV (2011) Versatile phase transfer of gold nanoparticles from aqueous media to different organic media. Chem Eur J 17:4648–4654

    Article  CAS  Google Scholar 

  33. Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142

    Article  CAS  Google Scholar 

  34. Karg M, Hellweg T (2009) Smart inorganic/organic hybrid microgels: synthesis and characterisation. J Mater Chem 19:8714–8727

    Article  CAS  Google Scholar 

  35. Karg M, Hellweg T (2009) New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr Opin Colloid Interface Sci 14:438–450

    Article  CAS  Google Scholar 

  36. Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285:953–966

    Article  CAS  Google Scholar 

  37. Pich AZ, Adler HJP (2007) Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym Int 56:291–307

    Article  CAS  Google Scholar 

  38. Lu Y, Ballauff M (2011) Thermosensitive core-shell microgels: from colloidal model systems to nanoreactors. Prog Polym Sci 36:767–792

    Article  CAS  Google Scholar 

  39. Agrawal M, Gupta S, Stamm M (2011) Recent developments in fabrication and applications of colloid-based composite particles. J Mater Chem, 21:615–627

    Article  CAS  Google Scholar 

  40. Wu C, Zhou S, Au-yeung SCF, Jiang S (1996) Volume phase transition of spherical microgel particles. Angew Makromol Chem 240:123–136

    Article  CAS  Google Scholar 

  41. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33

    Article  CAS  Google Scholar 

  42. Senff H, Richtering W (2000) Influence od cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid Polym Sci 278:830–840

    Article  CAS  Google Scholar 

  43. Kratz K, Hellweg T, Eimer W (2001) Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42:6631–6639

    Article  CAS  Google Scholar 

  44. Stieger M, Pedersen JS, Lindner P, Richtering W (2004) Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Langmuir 20:7283–7292

    Article  CAS  Google Scholar 

  45. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823

    Article  CAS  Google Scholar 

  46. Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016

    Article  CAS  Google Scholar 

  47. Fernández-Nieves A, Fernández-Barbero A, Vincent B, de las Nieves FJ (2000) Charge controlled swelling of microgel particles. Macromolecules 33:2114–2118

    Article  Google Scholar 

  48. Kratz K, Hellweg T, Eimer W (2000) Influence od charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylicacid) microgels. Colloids Surf A 170:137–149

    Article  CAS  Google Scholar 

  49. Hoare T, Pelton R (2004) Highly ph and temperature responsive microgels functionalized with vinylacetic acid. Macromol 37:2544–2550

    Article  CAS  Google Scholar 

  50. Shibayama M, Ikkai F, Inamoto S, Nomura S, Han CC (1996) pH and salt concentration dependence of the microstructure of poly(N-isopropylacrylamide-co-acrylic acid) gels. J Chem Phys 105(10):4358–4366

    Article  CAS  Google Scholar 

  51. Fernández-Nieves A, Márquez M (2005) Electrophoresis of ionic microgel particles: from charged hard spheres to polyelectrolyte-like behavior. J Chem Phys 122(084702):084702

    Article  Google Scholar 

  52. Karg M, Pastoriza-Santos I, Rodriguez-González B, von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behaviorof PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24:6300–6306

    Article  CAS  Google Scholar 

  53. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379

    Article  Google Scholar 

  54. Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition. J Chem Phys 97(9):6829–6841

    Article  CAS  Google Scholar 

  55. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin, Germany

    Google Scholar 

  56. Karg M, Jaber S, Hellweg T, Mulvaney P (2011) Surface plasmon spectroscopy of gold-poly-N-isopropylacrylamide core-shell particles. Langmuir 27(2):820–827

    Article  CAS  Google Scholar 

  57. Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126:7908–7914

    Article  CAS  Google Scholar 

  58. Pich A, Karak A, Lu Y, Ghosh AK, Adler H-JP (2006) Hybrid microgels containing gold nanoparticles. e-Polymers (018):ISSN 1618–7229

  59. Suzuki D, Kawaguchi H (2006) Hybrid microgels with reversibly changeable multiple brilliant color. Langmuir 22:3818–3822

    Article  CAS  Google Scholar 

  60. Contreras-Cáceres R, Sanchez-Iglesias A, Karg M, Pastoriza-Santos I, Feéez-Juste J, Pacifico J, Hellweg T, Fernández-Barbero A, Liz-Marzán LM (2009) Encapsulation and growth of gold nanoparticles in thermoresponsive microgels. Adv Mater 20(9):1666–1670

    Article  Google Scholar 

  61. Contreras-Cáceres R, Pacifico J, Pastoriza-Santos I, Pérez-Juste J, Fernández-Barbero A, Liz-Marzán LM (2009) Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth. Adv Funct Mater 19:3070–3076

    Article  Google Scholar 

  62. Jaber S, Karg M, Morfa A, Mulvaney P (2011) 2D assembly of gold-PNIPAM core-shell nanocrystals. Phys Chem Chem Phys 13:5576–5578

    Article  CAS  Google Scholar 

  63. Karg M, Hellweg T, Mulvaney P (2011) Self-assembly of tunable nanocrystal superlattices using poly-(NIPAM) Spacers. Adv Funct Mater 21:4668–4676

    Article  CAS  Google Scholar 

  64. Fernández-López C, Pérez-Balado C, Pérez-Juste J, Pastoriza-Santos I, de Lera ÁR, Liz-Marzán LM (2012) A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. Soft Matter 8:4165–4170. doi:10.1039/C1SM06396K

    Article  Google Scholar 

  65. Karg M, Pastoriza-Santos I, Pérez-Juste J, Hellweg T, Liz-Marzán LM (2007) Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 3(7):1222–1229

    Article  CAS  Google Scholar 

  66. Karg M, Lu Y, Carbó-Argibay E, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, Hellweg T (2009) Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and ph-tunable plasmon resonance. Langmuir 25:3163–3167

    Article  CAS  Google Scholar 

  67. Jones CD, Lyon LA (2003) Photothermal patterning of microgel/gold nanoparticle composite colloidal crystals J Am Chem Soc 125:460–465

    Article  CAS  Google Scholar 

  68. Jones CD, Serpe MJ, Schroeder L, Lyon LA (2003) Microlens formation in microgel/gold colloid composite materials via photothermal patterning. J Am Chem Soc 125:5292–5293

    Article  CAS  Google Scholar 

  69. Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126:15938–15939

    Article  CAS  Google Scholar 

  70. Das M, Sanson N, Fava D, Kumacheva E (2007) Microgels loaded with gold nanorods: photothermally triggered volume transitionsunder physiological conditions. Langmuir 23(1):196–201

    Article  CAS  Google Scholar 

  71. Rodríguez-Fernández J, Fedoruk M, Hrelescu C, Lutich AA, Feldmann J (2011) Triggering the volume phase transition of core-shell Au nanorod-microgel nanocomposites with light. Nanotechnology 22:245708

    Article  Google Scholar 

  72. Hormeńo S, Bastús NG, Pietsch A, Weller H, Arias-Gonzalez JR, Juárez BH (2011) Plasmon–exciton interactions on single thermoresponsive platforms demonstrated by optical tweezers. Nano Letters 11:4742–4747

    Article  Google Scholar 

  73. Álvarez-Puebla RA, Contreras-Cáceres R, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2008) Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem Int Ed 47:1–7

    Article  Google Scholar 

  74. Contreras-Cáceres R, Pastoriza-Santos I, Álvarez-Puebla RA, Pérez-Juste J, Fernández-Barbero A, Liz-Marzán LM (2010) Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. Chem Eur J 16:9462–9467

    Article  Google Scholar 

  75. Contreras-Cáceres R, Abalde-Cela S, Guardia-Girós P, Fernández-Barbero A, Pérez-Juste J, Álvarez-Puebla RA, Liz-Marzán LM (2011) Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 27:4520–4525

    Article  Google Scholar 

  76. Jańczewski D, Tomczak N, Han MY, Vansco GJ (2009) Introduction of quantum dots into PNIPAM microspheres by precipitation polymerization above LCST. Eur Polym J 45:1912–1917

    Article  Google Scholar 

  77. Agrawal M, Rubio-Retama J, Zafeiropoulos NE, Gaponik N, Gupta S, Cimrova V, Lesnyak V, López-Cabarcos E, Tzavalas S, Rojas-Reyna R, Eychmüller A, Stamm M (2008) Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels. Langmuir 24:9820–9824

    Article  CAS  Google Scholar 

  78. Wu W, Zhou T, Aiello M, Zhou S (2010) Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic-inorganic hybrid microgels. Biosens Bioelectron 25:2603–2610

    Article  CAS  Google Scholar 

  79. Lu Y, Mei Y, Ballauff M, Drechsler M (2006) Thermoresponsive core-shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110:3930–3937

    Article  CAS  Google Scholar 

  80. Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45:813–816

    Article  CAS  Google Scholar 

  81. Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069

    Article  CAS  Google Scholar 

  82. Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M (2009) Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J Mater Chem 19:3955–3961

    Article  CAS  Google Scholar 

  83. Carregal-Romero S, Buurma NJ, Pérez-Juste J, Hervés P, Liz-Marzán LM (2010) Catalysis by Au@pNIPAM nanocomposites: effect of the cross-linking density. Chem Mater 22:3051–3059

    Article  CAS  Google Scholar 

  84. Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J (2010) In situ growth of catalytic active Au-Pt bimetallic nanorods in thermoresponsive core-shell microgels. ACS Nano 4(12):7078–7086

    Article  CAS  Google Scholar 

  85. Zhang F, Wang C-C (2009) Preparation of P(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles. Langmuir 25:8255–8262

    Article  CAS  Google Scholar 

  86. Sánchez-Iglesias A, Grzelczak M, Rodríguez-González B, Guardia-Girós P, Pastoriza-Santos I, Pérez-Juste J, Prato J, Liz-Marzán LM (2009) Synthesis of multifunctional composite microgels via in situ Ni growth on pNIPAM-coated Au nanoparticles. ACS Nano 3:3184–3190

    Article  Google Scholar 

  87. Pich A, Bhattacharya S, Lu Y, Boyko V, Adler HJP (2004) Temperature-sensitive hybrid microgels with magnetic properties. Langmuir 20:10706–10711

    Article  CAS  Google Scholar 

  88. Bhattacharya S, Eckert F, Boyko V, Pich A (2007) Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small 3:650–657

    Article  CAS  Google Scholar 

  89. Dagallier C, Dietsch H, Schurtenberger P, Scheffold F (2010) Thermoresponsive hybrid microgel particles with intrinsic optical and magnetic anisotropy. Soft Matter 6:2174–2177

    Article  CAS  Google Scholar 

  90. Laurenti M, Guardia P, Contreras-Cáceres R, Pérez-Juste J, Fernandez-Barbero A, Lopez-Cabarcos E, Rubio-Retama J (2011) Synthesis of thermosensitive microgels with a tunable magnetic core. Langmuir 27:10484–10491

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author likes to acknowledge T. Hellweg from the University of Bielefeld (Germany), P. Mulvaney from the University of Melbourne (Australia), and L.M. Liz.-Marzán from the University of Vigo (Spain) for the introduction to this fascinating field of research and the support during the last years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Karg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karg, M. Multifunctional inorganic/organic hybrid microgels. Colloid Polym Sci 290, 673–688 (2012). https://doi.org/10.1007/s00396-012-2644-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2644-8

Keywords

Navigation