Skip to main content

Advertisement

Log in

Tuning of the charge and energy transfer in ternary CdSe/poly(3-methylthiophene)/poly(3-hexylthiophene) nanocomposite system

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Composite CdSe:poly(3-methylthiophene) (P3MT) nanoparticles have been synthesized via polymerization of 3-methylthiophene (3MT) in the presence of CdSe particles of nanorod or dot-like morphology and dispersed in the poly(3-hexylthiophene) (P3HT) matrix. The effect of the P3MT layer to mediate charge and energy transfer between CdSe and P3HT in the ternary nanocomposite system has been studied using electronic absorption, photoluminescence spectroscopy, and current–voltage measurements. The energy level diagram of the composite system has been deduced based on optical and electrochemical data of the separate components of the system. The contribution of the low- and high-molecular fractions of P3MT to control the charge transfer in order to optimize the intermediary role of P3MT is analyzed. Particularly, it was shown that excitation of the low-molecular P3MT leads to energy transfer to both CdSe and P3HT components, and it also serves as a barrier against recombination of electrons and holes separated at CdSe and P3HT, respectively. Thus, the role of the P3MT interlayer in assisting the charge separation and increasing an open-circuit voltage in the photovoltaic cell based on the ternary system is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Radychev N, Lokteva I, Witt F, Kolny-Olesiak J, Borchert H, Parisi J (2011) J Phys Chem C 115:14111

    Article  CAS  Google Scholar 

  2. Park Y, Advincula RC (2011) Chem Mater 23:4273

    Article  CAS  Google Scholar 

  3. Choi JW, Kulshreshtha C, Kennedy GP, Kwon JH, Jung SH, Chae M (2011) Sol Energy Mater Sol Cells 95:2069

    Article  CAS  Google Scholar 

  4. Greenham NC, Peng X, Alivisatos AP (1996) Phys Rev B 54:17628

    Article  CAS  Google Scholar 

  5. Milliron DJ, Gur I, Alivisatos AP (2005) MRS Bull 30:41

    Article  CAS  Google Scholar 

  6. Zhao L, Pang XC, Adhikary R, Petrich JW, Jeffries-EL M, Lin ZQ (2011) Adv Mater 23:2844

    Article  CAS  Google Scholar 

  7. Lin ZQ (2008) Chem Eur J 14:6294

    Article  CAS  Google Scholar 

  8. Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries-EL M, Petrich JW, Lin Z (2007) J Am Chem Soc 129:12828

    Article  CAS  Google Scholar 

  9. Zhao L, Pang X, Adhikary R, Petrich JW, Lin Z (2011) Angew Chem Int Ed 50:3958

    Article  CAS  Google Scholar 

  10. Goodman MD, Xu J, Wang J, Lin Z (2009) Chem Mater 21:934

    Article  CAS  Google Scholar 

  11. Cozzoli PD, Pellegrino T, Manna L (2006) Chem Soc Rev 35:1195

    Article  CAS  Google Scholar 

  12. Aldakov D, Chandezon F, DeBettignies R, Firon M, Reiss P, Pron A (2007) Eur Phys J Appl Phys 36:261

    Article  Google Scholar 

  13. Milliron DJ, Alivisatos AP, Pitois C, Edder C, Fréchet JMJ (2003) Adv Mater 15:58

    Article  CAS  Google Scholar 

  14. Liu JS, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) J Am Chem Soc 126:6550

    Article  CAS  Google Scholar 

  15. Tomczak N, Jańczewski D, Han M, Vancso GJ (2009) Prog Polym Sci 34:393

    Article  CAS  Google Scholar 

  16. Hammer NI, Early KT, Sill K, Odoi MY, Emrick T, Barnes M (2006) J Phys Chem B 110:14167

    Article  CAS  Google Scholar 

  17. Odoi MY, Hammer NI, Sill K, Emrick T, Barnes M (2006) J Am Chem Soc 128:3506

    Article  CAS  Google Scholar 

  18. Dayal S, Kopidakis N, Olson DC, Ginley DS, Rumbles G (2009) J Am Chem Soc 131:17726

    Article  CAS  Google Scholar 

  19. Dayal S, Kopidakis N, Olson DC, Ginley DS, Rumbles G (2010) Nano Lett 10:239

    Article  CAS  Google Scholar 

  20. Goodman MD, Xu J, Wang J, Lin J (2009) Chem Mat 21:934

    Article  CAS  Google Scholar 

  21. Palaniappan K, Murphy JW, Khanam N, Horvath J, Alshareef H, Quevedo-Lopez M, Biewer MC, Park SY, Kim MJ, Gnade BE, Stefan MC (2009) Macromolecules 42:3845

    Article  CAS  Google Scholar 

  22. Gamboa SA, Sebastian PJ, Mathew X, Nguyen-Cong H, Chartier P (1999) Sol En Mater Sol Cells 59:115

    Article  CAS  Google Scholar 

  23. Nguyen-Cong H, Dieng M, Sene C, Chartier P (2000) Sol En Mater Sol Cells 63:23

    Article  CAS  Google Scholar 

  24. Saunders BR, Turner ML (2008) Adv Colloid Interface Sci 138:1

    Article  CAS  Google Scholar 

  25. Pradhan B, Batabyal SK, Pal AJ (2006) Appl Phys Lett 88:093106

    Article  Google Scholar 

  26. Guo H, Zhou JZ, Lin ZH (2008) Electrochem Commun 10:146

    Article  CAS  Google Scholar 

  27. Jayasekera T, Monigold MS, Elizondo SL, Mintmire JW (2007) Int J Quantum Chem 107:3120

    Article  CAS  Google Scholar 

  28. Zhou Y, Li Y, Zhong H, Hou J, Ding Y, Yang C, Li Y (2006) Nanotechnology 17:4041

    Article  CAS  Google Scholar 

  29. Shalimova KV (1985) Semiconductor Physics. Energoatomizdat, Moscow (in Russian)

    Google Scholar 

  30. Raevskaya AE, Stroyuk AL, Kuchmiy SY, Azhniuk YM, Dzhagan VM, Yukhymchuk VO, Valakh MY (2006) Colloids Surf A 290:304

    Article  CAS  Google Scholar 

  31. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Science 310:462

    Article  CAS  Google Scholar 

  32. Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) J Phys Chem C 114:12784

    Article  CAS  Google Scholar 

  33. Ogurtsov NA, Pud AA, Dimitriev OP, Piryatinski YP, Smertenko PS, Noskov YV, Kutsenko AS (2011) Mol Cryst Liq Cryst 536:33[265]

    Google Scholar 

  34. Polec I, Henckens A, Goris L, Nicolas M, Loi MA, Adriaensens PJ, Lutsen L, Manca JV, Vanderzande D, Sariciftci NS (2003) J Polym Sci. Part A: Polym Chem 41:1034

    Article  CAS  Google Scholar 

  35. Piryatinski YP, Yaroshchuk OV (2000) Opt Spectrosc 89:860

    Article  Google Scholar 

  36. Patil AO, Heeger AJ, Wudl F (1988) Chem Rev 88:183

    Article  CAS  Google Scholar 

  37. Yu WW, Qu L, Guo W, Peng X (2003) Chem Mater 15:2854

    Article  CAS  Google Scholar 

  38. Sonar P, Sreenivasan KP, Madddanimath T, Vijayamohanan K (2006) Mater Res Bull 41:198

    Article  CAS  Google Scholar 

  39. Roncali J (1992) Chem Rev 92:711

    Article  CAS  Google Scholar 

  40. Wei Y, Chan C-C, Tian J, Jang G-W, Hsueh KF (1991) Chem Mater 3:888

    Article  CAS  Google Scholar 

  41. Albero J, Marttinez-Ferrero E, Ajuria J, Waldauf C, Pacios R, Palomares E (2009) Phys Chem Chem Phys 11:9644

    Article  CAS  Google Scholar 

  42. Brillson LJ (1977) Surf Sci 69:62

    Article  CAS  Google Scholar 

  43. Kim Y, Choulis SA, Nelson J, Bradley DC, Cook S, Durrant JR (2005) Appl Phys Lett 86:063502

    Article  Google Scholar 

  44. Smertenko P, Fenenko L, Brehmer L, Schrader S (2005) Adv Colloid Interface Sci 116:255

    Article  CAS  Google Scholar 

  45. Zyuganov AN, Svechnikov SV, Smertenko PS (1997) Phys Stat Sol (a) 43:333

    Article  Google Scholar 

  46. Sukach GA, Smertenko PS, Oleksenko PF, Nakammura S (2001) Tech Phys 46:438

    Article  CAS  Google Scholar 

  47. Zhao L, Chen Q, Li C, Shi GQ (2007) Sol Energy Mater Sol Cells 91:1811

    Article  CAS  Google Scholar 

  48. Mitchell EWJ, Mitchell JW (1951) Proc Royal Soc London A 210:70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of STCU project # 3746 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg P. Dimitriev.

Supplemental Material

TG and DTG curves of the composite CdSe-NR:P3MT; cyclic voltammograms of CdSe/P3MT nanocomposite and P3HT; change in PL emission of P3MT solution in chlorobenzene upon a gradual addition of the CdSe-NR dispersion; experimental frequencies of infrared bands registered for CdSe-NR:P3MT and CdSe-QD:P3MT composites

(PDF 247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitriev, O.P., Ogurtsov, N.A., Li, Y. et al. Tuning of the charge and energy transfer in ternary CdSe/poly(3-methylthiophene)/poly(3-hexylthiophene) nanocomposite system. Colloid Polym Sci 290, 1145–1156 (2012). https://doi.org/10.1007/s00396-012-2632-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2632-z

Keywords

Navigation