Colloid and Polymer Science

, Volume 290, Issue 10, pp 941–952 | Cite as

Composition-dependent sintering behaviour of chemically synthesised CuNi nanoparticles and their application in aerosol printing for preparation of conductive microstructures

  • Edit Pál
  • Robert Kun
  • Christina Schulze
  • Volker Zöllmer
  • Dirk Lehmhus
  • Marcus Bäumer
  • Matthias Busse
Original Contribution


Copper, nickel and copper–nickel nanoparticles were prepared by solution combustion method for use in direct write printing. Structural (X-ray diffraction) and morphological (transmission electron microscope) investigations showed that pure metal (Cu and Ni) and CuNi alloy particles with face-centred cubic crystal structure were formed. Atomic absorption spectrometer studies confirmed that the nanoparticle compositions corresponded to the initial Cu/Ni molar ratios selected for synthesis. Particle size and morphology were significantly influenced by composition, with high Cu content coinciding with small, spherical particles as opposed to larger, irregular shapes observed at high Ni concentrations. X-ray photoelectron spectroscopy measurements revealed that after the reduction process the surface of the alloy nanoparticles was partially oxidised in air and the amount of metallic surface species decreased, while the concentration of oxidic surface species and hydroxides increased with increasing Cu concentration (i.e. decreasing particle size). Dispersions of CuNi nanoparticles have been deposited by use of AerosolJet® and sintered under reducing atmosphere at 300–800 °C in order to prepare conductive structures. Resistivity measurements and microscopical studies (SEM-FIB) of printed and sintered CuNi structures showed that the sintering properties of nanoparticles were dependent on their chemical composition.


Nanoalloy Solution combustion Sintering Aerosol printing Conductive microstructures 


  1. 1.
    Brückner W, Baunack S, Reiss G, Leitner G, Knuth Th (1995) Oxidation behaviour of Cu–Ni(Mn) (constantan) films. Thin Solid Films 258:252–259CrossRefGoogle Scholar
  2. 2.
    Window AL (1992) Strain gauge technology, 2nd edn. Elsevier Science, EssexGoogle Scholar
  3. 3.
    Kuznetsov AA, Leontiev VG, Brukvin VA, Vorozhtsov GN, Kogan BY, Shlyakhtin OA, Yunin AM, Tsybin OI, Kuznetsov OA (2007) Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature. J Magn Magn Mater 311:197–203. doi:10.1016/j.jmmm.2006.11.199 CrossRefGoogle Scholar
  4. 4.
    Durivault L, Brylev O, Reyter D, Sarrazin M, Bélanger D, Roué L (2007) Cu–Ni materials prepared by mechanical milling: their properties and electrocatalytic activity towards nitrate reduction in alkaline medium. J Alloy Compd 432:323–332. doi:10.1016/j.jallcom.2006.06.023 CrossRefGoogle Scholar
  5. 5.
    Ban I, Stergar J, Drofenik M, Ferk G, Makovec D (2011) Synthesis of copper–nickel nanoparticles prepared by mechanical milling for use in magnetic hyperthermia. J Magn Magn Mater 323:2254–2258. doi:10.1016/j.jmmm.2011.04.004 CrossRefGoogle Scholar
  6. 6.
    Bonet F, Grugeon S, Dupont L, Urbina RH, Guery C, Tarascon JM (2003) Synthesis and characterization of bimetallic Ni–Cu particles. J Solid State Chem 172:111–115. doi:10.1016/S0022-4596(02)00163-9 CrossRefGoogle Scholar
  7. 7.
    Chatterjee J, Bettge M, Haik Y, Chen CJ (2005) Synthesis and characterization of polymer encapsulated Cu–Ni magnetic nanoparticles for hyperthermia applications. J Magn Magn Mater 293:303–309. doi:10.1016/j.jmmm.2005.02.024 CrossRefGoogle Scholar
  8. 8.
    Songping W, Jing N, Li J, Zhenou Z (2007) Preparation of ultra-fine copper–nickel bimetallic powders with hydrothermal-reduction method. Mater Chem Phys 105:71–75. doi:10.1016/j.materchenphys.2007.04.027 CrossRefGoogle Scholar
  9. 9.
    Songping W, Li J, Jing N, Zhenou Z, Song L (2007) Preparation of ultra fine copper–nickel bimetallic powders for conductive thick film. Intermetallics 15:1316–1321. doi:10.1016/j.intermet.2007.04.001 CrossRefGoogle Scholar
  10. 10.
    Li YD, Li LQ, Liao HW, Wang HR (1999) Preparation of pure nickel, cobalt, nickel–cobalt and nickel–copper alloys by hydrothermal reduction. J Mater Chem 9:2676–2677Google Scholar
  11. 11.
    Kaiser A, Görsmann C, Schubert U (1995) Influence on the metal complexation on size and composition of Cu/Ni nano-particles prepared by sol–gel processing. J Sol-Gel Sci Technol 8:795–799Google Scholar
  12. 12.
    Mörke W, Bierute T, Jarsetz J, Görsmann C, Schubert U (1996) Characterization of highly dispersed bimetallic Ni–Cu alloy particles by ferromagnetic resonance. Colloids Surf A: Physicochem Eng Asp 115:303–309CrossRefGoogle Scholar
  13. 13.
    Ghosh SK, Grover AK, Dey GK, Totlani MK (2000) Nanocrystalline Ni–Cu alloy plating by pulse electrolysis. Surf Coat Technol 126:48–63CrossRefGoogle Scholar
  14. 14.
    Glibin VP, Kuznetsov BV, Vorobyova TN (2005) Investigation of thermodynamic properties of Cu–Ni alloys obtained by electrodeposition or by casting. J Alloy Compd 386:139–143. doi:10.1016/j.jallcom.2004.05.052 CrossRefGoogle Scholar
  15. 15.
    Kazeminezhad I, Schwarzacher W (2001) Magnetic properties of alloy films prepared by fast pulse-plating. J Magn Magn Mater 226–230:1650–1652CrossRefGoogle Scholar
  16. 16.
    Kazeminezhad I, Schwarzacher W (2002) Studying the transition from multilayer to alloy in the Ni–Cu system. J Magn Magn Mater 240:467–468CrossRefGoogle Scholar
  17. 17.
    Galo Carnedas T, Ricardo Oliva C (1998) Synthesis and characterization of bimetallic Ni–Cu colloids. Mater Res Bull 33:1599–1608CrossRefGoogle Scholar
  18. 18.
    Feng J, Zhang CP (2006) Preparation of CuNi alloy nanocrystallites in water-in-oil microemulsions. J Colloids Interf Sci 293:414–420. doi:10.1016/j.jcis.2005.06.071 CrossRefGoogle Scholar
  19. 19.
    Ahmed J, Ramanujachary KV, Lofland SE, Furiato A, Gupta G, Shivaprasad SM, Ganguli AK (2008) Bimetallic Cu–Ni nanoparticles varying composition (CuNi3, CuNi, Cu3Ni). Colloids Surf A: Physicochem Eng Asp 331:206–212. doi:10.1016/j.colsurfa.2008.08.007 CrossRefGoogle Scholar
  20. 20.
    Wen M, Liu QY, Wang YF, Zhu YZ, Wu QS (2008) Positive microemulsion synthesis and magnetic property of amorphous multicomponent Co-, Ni- and Cu-based alloy nanoparticles. Colloids Surf A: Physicochem Eng Asp 318:238–244. doi:10.1016/j.colsurfa.2007.12.041 CrossRefGoogle Scholar
  21. 21.
    Shaikhutdinov SK, Avdeeva LB, Goncharova OV, Kochubey DI, Novgorodov BN, Plyasova LM (1995) Coprecipitated Ni–Al and Ni–Cu–Al catalysts for methane decomposition and carbon decomposition I. genesis of calcined and reduced catalysts. Appl Catal A 126:125–139CrossRefGoogle Scholar
  22. 22.
    Noller H, Lin WM (1984) Activity and selectivity of Ni = Cu/Al2O3 catalysts for hydrogenation of crotonaldehyde and mechanism of hydrogenation. J Catal 85:-30.Google Scholar
  23. 23.
    Jung CH, Lee HG, Kim CJ, Bhaduri SB (2003) Synthesis of Cu–Ni alloy powder directly from metal salts solution. J Nanopart Res 5:383–388CrossRefGoogle Scholar
  24. 24.
    Cangiano MA, Carreras AC, Ojeda MW, Ruiz MC (2008) A new chemical route to synthesize Cu–Ni alloy nanostructured particles. J Alloy Compd 458:405–409. doi:10.1016/j.jallcom.2007.03.113 CrossRefGoogle Scholar
  25. 25.
    Rao GR, Mishra BG, Sahu HR (2004) Synthesis of CuO, Cu and CuNi alloy particles by solution combustion using carbohydrazide and N-tertiarybutoxy-carbonylpiperazine fuels. Mater Lett 58:3523–3527. doi:10.1016/j.matlet.2004.05.082 CrossRefGoogle Scholar
  26. 26.
    Erri P, Nader J, Varma A (2008) Controlling combustion wave propagation for transition metal/alloy/cermet foam synthesis. Adv Mater 20:1243–1245. doi:10.1002/adma.200701365 CrossRefGoogle Scholar
  27. 27.
    Blum JK, Göpel W (1977) Influence of hydrogen chemisorption on the magnetism of thin nickel films. Thin Solid Films 42:7–15CrossRefGoogle Scholar
  28. 28.
    Richon G, Gouault J (1979) The ohmic stability and low temperature coefficient of resistance of Cu–Ni/Au–Ni multilayers obtained in ultrahigh vacuum by controlled co-evaporation. Thin Solid Films 57:349–352CrossRefGoogle Scholar
  29. 29.
    Abdul-Lettif AM (2007) Investigation of interdiffusion in copper-nickel bilayer thin films. Physica B 388:107–111. doi:10.1016/j.physb.2006.05.014 CrossRefGoogle Scholar
  30. 30.
    Chan KY, Teo BS (2006) Atomic force microscopy (AFM) and X-ray diffraction (XRD) investigations of copper thin films prepared by dc magnetron sputtering technique. Microelectr J 37:1064–1071. doi:10.1016/j.mejo.2006.04.008 CrossRefGoogle Scholar
  31. 31.
    Chan KY, Luo PQ, Zhou ZB, Tou TY, Teo BS (2009) Influence of direct current plasma magnetron sputtering parameters on the material characteristic of polycrystalline copper films. Appl Surf Sci 255:5186–5190. doi:10.1016/j.apsusc.2008.09.072 CrossRefGoogle Scholar
  32. 32.
    Park BK, Kim D, Jeong S, Moon J, Kim JS (2007) Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 515:7706–7711. doi:10.1016/j.tsf.2006.11.142 CrossRefGoogle Scholar
  33. 33.
    Marinov VR, Atanasov YA, Khan A, Vaselaar D, Halvorsen A, Schulz DL, Chrisey DB (2007) Direct write vapor sensors on FR4 plastic substrate. IEEE Sens J 7:937–944. doi:10.1109/JSEN.2007.895964 CrossRefGoogle Scholar
  34. 34.
    Grunwald I, Groth E, Wirth I, Schumacher J, Maiwald M, Zöllmer V, Busse M (2010) Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies. Biofabrication 2:014106. doi:10.1088/1758-5082/2/1/014106 CrossRefGoogle Scholar
  35. 35.
    Maiwald M, Werner C, Zöllmer V, Busse M (2010) INKtelligent® printing for sensor application. Sens Rev 30:19–23. doi:10.1108/02602281011010763 CrossRefGoogle Scholar
  36. 36.
    Maiwald M, Werner C, Zöllmer V, Busse M (2010) INKtelligent printed strain gauges. Sensor Actuat A 162:198–201. doi:10.1016/j.sna.2010.02.019 CrossRefGoogle Scholar
  37. 37.
    Moulder F, Stickle WF, Sobol PE, Bomben KD, Chastain J, King RC Jr (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronic Inc, Eden PrairieGoogle Scholar
  38. 38.
    Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898. doi:10.1016/j.apsusc.2010.07.086 CrossRefGoogle Scholar
  39. 39.
    Kishi K, Sasanuma M (1989) The interaction of O2 with Cu/Ni(100) and Cu/NiO/Ni(100) surfaces studied by XPS. J Electron Spectrosc Relat Phenom 48:421–434CrossRefGoogle Scholar
  40. 40.
    Brückner W, Baunack S (1999) Stress and oxidation in CuNi thin films. Thin Solid Films 355–356:316–321CrossRefGoogle Scholar
  41. 41.
    Olynick DL, Gibson JM, Averback RS (1996) Trace oxygen effects on copper nanoparticle size and morphology. Appl Phys Lett 68:343–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Edit Pál
    • 1
    • 2
  • Robert Kun
    • 1
    • 2
  • Christina Schulze
    • 3
  • Volker Zöllmer
    • 4
  • Dirk Lehmhus
    • 2
  • Marcus Bäumer
    • 2
    • 3
  • Matthias Busse
    • 1
    • 2
    • 4
  1. 1.Faculty of Production EngineeringUniversity of BremenBremenGermany
  2. 2.ISIS Sensorial Material Scientific CentreUniversity of BremenBremenGermany
  3. 3.Institute of Applied and Physical ChemistryUniversity of BremenBremenGermany
  4. 4.Fraunhofer Institute for Manufacturing Technology and Advanced MaterialsBremenGermany

Personalised recommendations