Skip to main content
Log in

Role of gas delay time on the hierarchical crystalline structure and mechanical property of HDPE molded by gas-assisted injection molding

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The relationship among the processing parameters, crystalline morphology, and macroscopic properties in injected molded bar becomes very complicated due to existence of temperature gradient and shear gradient along the sample thickness. To enhance the shear strength, gas-assisted injection molding (GAIM) was utilized in producing the molded bars. The aim of our research was to explore the relationship between processing conditions and the spatial variation of the hierarchy structure as well as the mechanical properties of high-density polyethylene (HDPE) obtained via GAIM. In our previous work [Wang L, Yang B, Yang W et al (2011) Colloid Polym Sci 289:1661–1671], we found that the enhancement of the gas pressure can remarkably increase the degree of molecular orientation in the HDPE samples, which turns out to improve the mechanical performances of GAIM parts. In this work, the hierarchy structure, orientation behavior, and mechanical properties of molder bars under different gas delay time were investigated using a variety of characterization techniques including rheological experiments, scanning electron microscope, tensile testing, differential scanning calorimetry, and two-dimensional wide-angle X-ray scattering. Moreover, the temperature field during the short shot stage of GAIM process was simulated using an enthalpy transformation approach. Our results indicate that these properties were intimately related to each other, and with prolonged gas delay time, GAIM samples with higher degree of orientation and improved mechanical properties were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Michaeli W, Haberstroh E (2000) Kunststoffe Plast Eur 90:52–56

    Google Scholar 

  2. Avery J (2001) Gas-assist injection molding: principles and application. Hanser Publishers, Munich

    Google Scholar 

  3. Chen SH, Hu SY, Chao SM (2000) Polym Eng Sci 40:595–606

    Article  CAS  Google Scholar 

  4. Haagh LGAAV, Peters GWM, Van de Vosse FN, Hmeijer HE (2001) Polym Eng Sci 41:449–465

    Article  CAS  Google Scholar 

  5. Haberstroh E, Wehr H (2000) Macromol Mater Eng 284:76–80

    Article  Google Scholar 

  6. Marcilla A, Odjo-Omoniyi A, Ruiz-Femenia R, Garcia-Quesada JC (2006) J Mater Process Technol 178:350–357

    Article  Google Scholar 

  7. Liu SJ, Wu YC (2007) Polym Test 26:232–242

    Article  Google Scholar 

  8. Shen YK, Jian HM, Wu WY, Yang SY (2001) Int Commun Heat Mass Transf 28:139–148

    Article  CAS  Google Scholar 

  9. Johnson L, Olley P, Coates PD (2000) Plast Rubber Compos 29:31–37

    CAS  Google Scholar 

  10. Li CT, Isayev AI (2004) Polym Eng Sci 44:983–991

    Article  CAS  Google Scholar 

  11. Chau SY (2008) Polym Eng Sci 48:1801–1814

    Article  CAS  Google Scholar 

  12. Chang YP, Hu SY, Chen SC (1998) Int Commun Heat Mass Transf 25:989–998

    Article  CAS  Google Scholar 

  13. Yang B, Fu XR, Yang W, Liang SP, Sun N, Hu S, Yang MB (2009) Macromol Mater Eng 294:336–344

    Article  CAS  Google Scholar 

  14. Yang B, Fu XR, Yang W, Liang SP, Hu S, Yang MB (2009) Polym Eng Sci 49:1234–1242

    Article  CAS  Google Scholar 

  15. Zheng GQ, Yang W, Yang MB, Chen JB, Li Q, Shen CY (2008) Polym Eng Sci 48:976–986

    Article  CAS  Google Scholar 

  16. Zheng GQ, Huang L, Yang W, Yang B, Yang MB, Liu CT, Shen CY (2007) Polymer 48:5486–5492

    Article  CAS  Google Scholar 

  17. Zhang K, Liu ZY, Yang B, Yang W, Lu Y, Wang L, Sun N, Yang MB (2011) Polymer 52:3871–3878

    Article  CAS  Google Scholar 

  18. Zheng GQ, Yang W, Liu CT, Shen CY, Yang MB (2007) Mater Lett 61:3436–3439

    Article  CAS  Google Scholar 

  19. Huang L, Yang W, Yang B, Yang MB, An HN (2008) Polymer 49:4051–4056

    Article  CAS  Google Scholar 

  20. Wang L, Yang W, Huang L, Yang B, Sun N, Yang MB (2010) Plast Rubber Compos 39:385–391

    Article  CAS  Google Scholar 

  21. Sun N, Yang B, Wang L, Yang W, Zhang K, Yang MB (2011) Polym Plast Technol 50:804–809

    Article  CAS  Google Scholar 

  22. Chien RD, Chen SC, Jeng MC, Yang HY (1999) Polymer 40:2949–2959

    Article  Google Scholar 

  23. Chen SC, Hu SY, Huang JS, Chien RD (1998) Polym Eng Sci 37:1085–1100

    Article  Google Scholar 

  24. Ong NS, Lee HL, Parvez MA (2001) Adv Polym Technol 20:270–280

    Article  CAS  Google Scholar 

  25. Parvez AZ, Ong NS, Lam YC, Tor SB (2002) J Mater Process Technol 121:27–35

    Article  Google Scholar 

  26. Somania RH, Yang L, Zhu L, Hsiao BS (2005) Polymer 46:8587–8623

    Article  Google Scholar 

  27. Keller A, Kolnaar HWH (1997) In: Meijer HEH (ed) Processing of polymers, vol 18. New York, VCH

    Google Scholar 

  28. Varga J, Karger-Kocsis J (1995) Polymer 36:4877–4881

    CAS  Google Scholar 

  29. Keller A, Cheng SZD (1998) Polymer 39:4461–4487

    Article  Google Scholar 

  30. Goschel U, Swartjes FHM, Peters GWM, Meijer HEH (2000) Polymer 41:1541–1550

    Article  CAS  Google Scholar 

  31. Somania RH, Yang L, Zhu L, Hsiao BS (2005) Polymer 46:8587–8623

    Article  Google Scholar 

  32. Wang L, Yang B, Yang W, Sun N, Yin B, Feng JM, Yang MB (2011) Colloid Polym Sci 289:1661–1671

    Article  CAS  Google Scholar 

  33. Alamo RG, Mandelkern L (1989) Macromolecules 22:1273–1277

    Article  CAS  Google Scholar 

  34. Yang B, Fu XR, Yang W, Huang L, Yang MB, Feng JM (2008) Polym Eng Sci 48:1707–1717

    Article  CAS  Google Scholar 

  35. Yang B, Fu XR, Yang W, Sun N, Hu S, Lu Y, Yang MB (2010) J Macromol Sci Part B, Phys 49:734–749

    Article  CAS  Google Scholar 

  36. Carreau PJ, MacDonald IF, Bird RB (1968) Chem Eng Sci 23:901–911

    Article  CAS  Google Scholar 

  37. Ko MJ, Waheed N, Lavine MS, Rutledge GC (2004) J Chem Phys 121:2823–2832

    Article  CAS  Google Scholar 

  38. Su R, Su JX, Wang K, Yang CY, Zhang Q, Fu Q (2009) Eur Polym 45:747–756

    Article  CAS  Google Scholar 

  39. Jose S, Aprem AS, Francis B et al (2004) Eur Polym J 40:2105–2115

    Article  CAS  Google Scholar 

  40. Keum JK, Zuo F, Hsiao BS (2008) Macromolecules 41:4766–4776

    Article  CAS  Google Scholar 

  41. Jiang ZY, Tang YJ, Rieger J et al (2002) Eur Polym J 46:1886–1904

    Google Scholar 

  42. Hermanns P, Platzek P (1939) Kolloid Z 88:68–72

    Article  Google Scholar 

  43. Elmoumni A, Winter HH, Waddon A, Fruitwala H (2003) Macromolecules 36:6453–6461

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is financially supported by the National Natural Science Foundation of China (grant nos. 20874066 and 51033003). The authors also thank Mr. Chao-liang Zhang for his kind assistance in morphological observations. In particular, Mr. Guo-qiang Pan from the NSRL of USTC is gratefully acknowledged for the 2d-WAXS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Bo Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Yang, B., Sun, N. et al. Role of gas delay time on the hierarchical crystalline structure and mechanical property of HDPE molded by gas-assisted injection molding. Colloid Polym Sci 290, 1133–1144 (2012). https://doi.org/10.1007/s00396-012-2610-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2610-5

Keywords

Navigation