Skip to main content
Log in

Combinatorial effect of different alginate compositions, polycations, and gelling ions on microcapsule properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Microencapsulation technology is commonly used to deliver cells and drugs for therapeutic applications. The encapsulation material has a direct influence over the properties of microcapsules and will eventually dictate the efficacy of this delivery system. In this study, the combinatory effect of different alginate compositions, polycations and gelling ions was investigated to determine their roles in affecting the properties of the microcapsules. A multifactorial relationship was found between the three factors, in which certain factors took priority over others in influencing the overall property of the microcapsules. As the size of the microcapsules was kept constant throughout the investigation, further insights into the role of fabrication parameters on microcapsules size were also obtained. From the results, poly-l-lysine-coated microcapsules fabricated from 40/60 sodium alginate and cross-linked with barium chloride were the most ideal for applications that require both good mechanical as well as diffusion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Orive G, Hernández RM, Rodríguez Gascón A, Luis Pedraz J (2006) Encapsulation of cells in alginate gels. Meth Biotechnol 22:345–355

    Article  CAS  Google Scholar 

  2. Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. In: Steinbüchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry: properties, production, and patents. Wiley-VCH, Weinheim, pp 1–30

    Google Scholar 

  3. Smidsrød O (1974) Molecular basis for some physical properties of alginates in the gel state. Faraday Discuss Chem Soc 57:263–274

    Article  Google Scholar 

  4. Green DW, Mann S, Oreffo ROC (2006) Mineralized polysaccharide capsules as biomimetic microenvironments for cell, gene and growth factor delivery in tissue engineering. Soft Matter 2:732–737

    Article  CAS  Google Scholar 

  5. Draget K, Skjak-Braek G, Smidsrød O (1997) Alginate based new materials. Int J Biol Macromol 21:47–55

    Article  CAS  Google Scholar 

  6. Purcell EK, Singh A, Kipke DR (2009) Alginate composition effects on a neural stem cell-seeded scaffold. Tissue Eng 15:541–550

    Article  CAS  Google Scholar 

  7. Drury J (2004) The tensile properties of alginate hydrogels. Biomaterials 25:3187–3199

    Article  CAS  Google Scholar 

  8. Martinsen A (1991) Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. Carbohydr Polym 15:171–193

    Article  CAS  Google Scholar 

  9. Strand BL, Mørch YA, Syvertsen KR, Espevik T, Skjåk-Braek G (2003) Microcapsules made by enzymatically tailored alginate. J Biomed Mater Res A 64:540–550

    Article  Google Scholar 

  10. Moe ST, Draget KI, Skjåk-Bræk G, Smidsrød O (1995) Alginates. In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp 245–286

    Google Scholar 

  11. Mørch YA, Donati I, Strand BL, Skjåk-Braek G (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7:1471–1480

    Article  Google Scholar 

  12. Haug A, Smidsrød O (1970) Selectivity of some anionic polymers for divalent metal Ions. Acta Chem 24:843–854

    CAS  Google Scholar 

  13. Haug A (1961) The affinity of some divalent metals for different types of alginates. Acta Chem 15:1794–1795

    CAS  Google Scholar 

  14. Thu B, Bruheim P, Espevik T, Smidsrød O, Soon-Shiong P, Skjåk-Braek G (1996) Alginate polycation microcapsules I. Interaction between alginate and polycation. Biomaterials 17:1031–1040

    Article  CAS  Google Scholar 

  15. Place ES, Rojo L, Gentleman E, Sardinha JP, Stevens MM (2011) Strontium- and zinc-alginate hydrogels for bone tissue engineering. Tissue Eng Part A 17:2713–2722

    Article  CAS  Google Scholar 

  16. Dang TT, Xu Q, Bratlie KM, O’Sullivan ES, Chen XY, Langer R, Anderson DG (2009) Microfabrication of homogenous, asymmetric cell-laden hydrogel capsules. Biomaterials 30:6896–6902

    Article  CAS  Google Scholar 

  17. De Vosa P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27:5603–5617

    Article  Google Scholar 

  18. Chang TM, Prakash S (1998) Therapeutic uses of microencapsulated genetically engineered cells. Mol Med Today 4:221–227

    Article  CAS  Google Scholar 

  19. Kibat PG, Igari Y, Wheatley MA, Eisen HN, Langer R (1990) Enzymatically activated microencapsulated liposomes can provide pulsatile drug release. FASEB 4:2533–2539

    CAS  Google Scholar 

  20. Polyak B, Geresh S, Marks RS (2004) Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules 5:389–396

    Article  CAS  Google Scholar 

  21. Abu-Rabeah K, Polyak B, Ionescu RE, Cosnier S, Marks RS (2005) Synthesis and characterization of a pyrrole–alginate conjugate and its application in a biosensor construction. Biomacromolecules 6:3313–3318

    Article  CAS  Google Scholar 

  22. Mazumder MAJ, Burke NAD, Shen F, Potter MA, Stover HDH (2009) Core-cross-linked alginate microcapsules for cell encapsulation. Biomacromolecules 10:1365–1373

    Article  CAS  Google Scholar 

  23. Darrabie MD, Kendall WF, Opara EC (2005) Characteristics of poly-l-ornithine-coated alginate microcapsules. Biomaterials 26:6846–6852

    Article  CAS  Google Scholar 

  24. Li HB, Jiang H, Wang CY, Duan CM, Ye Y, Su XP et al (2006) Comparison of two types of alginate microcapsules on stability and biocompatibility in vitro and in vivo. Biomed Mater 1:42–47

    Article  CAS  Google Scholar 

  25. Thu B, Bruheim P, Espevik T, Smidsrød O, Soon-Shiong P, Skjåk-Braek G (1996) Alginate polycation microcapsules II. Some functional properties. Biomaterials 17:1069–1079

    Article  CAS  Google Scholar 

  26. Wang C, Cowen C, Zhang Z, Thomas C (2005) High-speed compression of single alginate microspheres. Chem Eng Sci 60:6649–6657

    Article  CAS  Google Scholar 

  27. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657

    Article  CAS  Google Scholar 

  28. Ahearne M, Yang Y, El Haj AJ, Then KY, Liu KK (2005) Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface 2:455–463

    Article  CAS  Google Scholar 

  29. Rozenberg M, Shoham G (2007) FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys Chem 125:166–171

    Article  CAS  Google Scholar 

  30. Thanos CG, Bintz BE, Bell WJ, Qian H, Schneider PA, MacArthur DH, Emerich DF (2006) Intraperitoneal stability of alginate–polyornithine microcapsules in rats: an FTIR and SEM analysis. Biomaterials 27:3570–3579

    CAS  Google Scholar 

  31. Tam SK, Dusseault J, Polizu S, Menard M, Halle JP, Yahia LH (2005) Physicochemical model of alginate–poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials 26:6950–6961

    Article  CAS  Google Scholar 

  32. Deladino L, Anbinder P, Navarro A, Martino M (2008) Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr Polym 71:126–134

    Article  CAS  Google Scholar 

  33. Klokk TI, Melvik JE (2002) Controlling the size of alginate gel beads by use of a high electrostatic potential. J Microencapsul 19:415–424

    Article  CAS  Google Scholar 

  34. Inaki Y, Tohnai N, Miyabayashi K, Miyata M (1997) Isopoly-l-ornithine derivative as nucleic acid model. Nucleic Acids Symp Ser 37:25–26

    CAS  Google Scholar 

  35. Simpson NE, Stabler CL, Simpson CP, Sambanis A, Constantinidis I (2004) The role of the CaCl2–guluronic acid interaction on alginate encapsulated βTC3 cells. Biomaterials 25:2603–2610

    Article  CAS  Google Scholar 

  36. Stabler CL, Sambanis A, Constantinidis I (2002) Effects of alginate composition on the growth and overall metabolic activity of βtc3 cells. Ann NY Acad Sci 961:130–133

    Article  CAS  Google Scholar 

  37. Jejurikar A, Lawrie G, Martin D, Grøndahl L (2011) A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels. Biomed Mater 6:1–12

    Article  Google Scholar 

  38. Kuo C, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. J Biomed Mater Res 22:511–521

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Singapore Ministry of Education Academic Research Fund Tier 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleo Choong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loh, Q.L., Wong, Y.Y. & Choong, C. Combinatorial effect of different alginate compositions, polycations, and gelling ions on microcapsule properties. Colloid Polym Sci 290, 619–629 (2012). https://doi.org/10.1007/s00396-011-2568-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2568-8

Keywords

Navigation