Skip to main content
Log in

Structure of fumed silica gels in dodecane: enhanced network by oscillatory shear

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The structure and viscoelastic properties of fumed silica gels in dodecane were studied by means of dynamic rheology. With increasing the specific surface area of fumed silica nanoparticles, the plateau elastic modulus (G′), which is frequency-independent and shows the characteristic of a network of the fumed silica gels, decreases. Such networks of fumed silica gels show a significant temperature-dependent behavior and a transition temperature (T c) related with the restructuring of nanoparticle chain aggregates of fumed silica in gels. Under oscillatory shear, the fumed silica gels experience disorganization and reorganization and present strong structural recovery ability after adjusting oscillatory shear (AOS) at small strain amplitudes (1–10%), and a more perfect network structure than that in origin gels can be induced. Elevated temperature (above T c) improves the network structure to be more compact and stronger than that at a lower temperature, as a result, the deformation resistance during the AOS period and the structural recovery after AOS are enhanced. These results indicate that the network structure and viscoelastic properties of fumed silica gels can be tailored and optimized by performing small-amplitude oscillatory shear at a properly selected temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rueb CJ, Zukoski CF (1998) Rheology of suspensions of weakly attractive particles: approach to gelation. J Rheol 42:1451–1475

    Article  CAS  Google Scholar 

  2. Shah SA, Chen YL, Schweizer KS, Zukoski CF (2003) Viscoelasticity and rheology of depletion flocculated gels and fluids. J Chem Phys 119:8747–8760

    Article  CAS  Google Scholar 

  3. Raghavan SR, Khan SA (1995) Shear-induced microstructural changes in flocculated suspensions of fumed silica. J Rheol 39:1311–1325

    Article  CAS  Google Scholar 

  4. Smith WE, Zukoski CF (2006) Role of solvation forces in the gelation of fumed silica–alcohol suspensions. J Colloid Interface Sci 304:348–358

    Article  CAS  Google Scholar 

  5. Nordstrom J, Matic A, Sun J, Forsyth M, MacFarlane DR (2010) Aggregation, ageing and transport properties of surface modified fumed silica dispersions. Soft Matter 6:2293–2299

    Article  Google Scholar 

  6. Smith WE, Zukoski CF (2006) Aggregation and gelation kinetics of fumed silica–ethanol suspensions. J Colloid Interface Sci 304:359–369

    Article  CAS  Google Scholar 

  7. Raghavan SR, Riley MW, Fedkiw PS, Khan SA (1998) Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica: dynamic rheology and microstructure. Chem Mater 10:244–251

    Article  CAS  Google Scholar 

  8. Ahmad S, Deepa M, Agnihotry SA (2008) Effect of salts on the fumed silica-based composite polymer electrolytes. Sol Energ Mater Sol C 92:184–189

    Article  CAS  Google Scholar 

  9. Khan SA, Maruca MA, Plitz IM (1991) Rheology of fumed silica dispersions for fiber-optic cables. Polym Eng Sci 31:1701–1707

    Article  CAS  Google Scholar 

  10. Wu H, Morbidelli M (2001) A model relating structure of colloidal gels to their elastic properties. Langmuir 17:1030–1036

    Article  CAS  Google Scholar 

  11. Németh J, Dékány I (2000) The effect of nanoparticle growth on rheological properties of silica and silicate dispersions. Colloid Polymer Sci 278:211–219

    Article  Google Scholar 

  12. Saito Y, Ogura H, Otsubo Y (2008) Rheological behavior of silica suspensions in aqueous solutions of associating polymer. Colloid Polymer Sci 286:1537–1544

    Article  CAS  Google Scholar 

  13. Raghavan SR, Walls HJ, Khan SA (2000) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir 16:7920–7930

    Article  CAS  Google Scholar 

  14. Yziquel F, Carreau PJ, Tanguy PA (1999) Non-linear viscoelastic behavior of fumed silica suspensions. Rheol Acta 38:14–25

    Article  CAS  Google Scholar 

  15. Khan SA, Zoeller NJ (1993) Dynamic rheological behavior of flocculated fumed silica suspensions. J Rheol 37:1225–1235

    Article  CAS  Google Scholar 

  16. Rueb CJ, Zukoski CF (1997) Viscoelastic properties of colloidal gels. J Rheol 41:197–218

    Article  CAS  Google Scholar 

  17. Gopalakrishnan V, Zukoski CF (2004) Effect of attractions on shear thickening in dense suspensions. J Rheol 48:1321–1344

    Article  CAS  Google Scholar 

  18. Ikeda S, Foegeding EA, Hagiwara T (1999) Rheological study on the fractal nature of the protein gel structure. Langmuir 15:8584–8589

    Article  CAS  Google Scholar 

  19. Brown WD (1987) The structure and physical properties of flocculating colloids. PhD dissertation, University of Cambridge, UK

  20. Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52:1891–1894

    Article  Google Scholar 

  21. Buscall R, Mills PDA, Goodwin JW, Lawson DW (1988) Scaling behaviour of the rheology of aggregate networks formed from colloidal particles. J Chem Soc Faraday Trans 1(84):4249–4260

    Google Scholar 

  22. Shih WH, Liu J, Shih WY, Sarikaya M, Aksay IA (1989) Mechanical properties of colloidal gels. Mater Res Soc Symp Proc 155:83–92

    Article  CAS  Google Scholar 

  23. Shih WH, Shih WY, Kim SI, Lin J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42:4772–4778

    Article  CAS  Google Scholar 

  24. Aubert C, Cannell DS (1986) Restructuring of colloidal silica aggregates. Phys Rev Lett 56:738–741

    Article  CAS  Google Scholar 

  25. Weber AP, Friedlander SK (1997) In situ determination of the activation energy for restructuring of nanometer aerosol agglomerates. J Aerosol Sci 28:179–192

    Article  CAS  Google Scholar 

  26. Jang HD, Friedlander SK (1998) Restructuring of chain aggregates of titania nanoparticles in the gas phase. Aerosol Sci Technol 29:81–91

    CAS  Google Scholar 

  27. Shih WY, Shih WH, Aksay IA (1999) Elastic and yield behavior of strongly flocculated colloids. J Am Ceram Soc 82:616–624

    Article  CAS  Google Scholar 

  28. Friedlander SK, Jang HD, Ryu KH (1998) Elastic behavior of nanoparticle chain aggregates. Appl Phys Lett 72:173–175

    Article  CAS  Google Scholar 

  29. Friedlander SK (1999) Polymer-like behavior of inorganic nanoparticle chain aggregates. J Nanopart Res 1:9–15

    Article  CAS  Google Scholar 

  30. Suh YJ, Ullmann M, Friedlander SK, Park KY (2001) Elastic behavior of nanoparticle chain aggregates (NCA): effects of substrate on NCA stretching and first observations by a high-speed camera. J Phys Chem B 105:11796–11799

    Article  CAS  Google Scholar 

  31. Suh YJ, Friedlander SK (2003) Origins of the elastic behavior of nanoparticle chain aggregates: measurements using nanostructure manipulation device. J Appl Phys 93:3515–3523

    Article  CAS  Google Scholar 

  32. Ogawa K, Vogt T, Ullmann M, Johnson S, Friedlander SK (2000) Elastic properties of nanoparticle chain aggregates of TiO2, Al2O3, and Fe2O3 generated by laser ablation. J Appl Phys 87:63–73

    Article  CAS  Google Scholar 

  33. Rong WZ, Pelling AE, Ryan A, Gimzewski JK, Friedlander SK (2004) Complementary TEM and AFM force spectroscopy to characterize the nanomechanical properties of nanoparticle chain aggregates. Nano Lett 4:2287–2292

    Article  CAS  Google Scholar 

  34. Bandyopadhyaya R, Rong WZ, Friedlander SK (2004) Dynamics of chain aggregates of carbon nanoparticles in isolation and in polymer films: implications for nanocomposite materials. Chem Mater 16:3147–3154

    Article  CAS  Google Scholar 

  35. Carteret C (2009) Mid- and near-infrared study of hydroxyl groups at a silica surface: H-bond effect. J Phys Chem C 113:13300–13308

    Article  CAS  Google Scholar 

  36. Macosko CW (1994) Rheology: principles measurements and applications. VCH Publishers, New York

    Google Scholar 

  37. Gun’ko VM, Mironyuk IF, Zarko VI et al (2001) Fumed silicas possessing different morphology and hydrophilicity. J Colloid Interface Sci 242:90–103

    Article  Google Scholar 

  38. Gun’ko VM, Mironyuk IF, Zarko VI et al (2005) Morphology and surface properties of fumed silicas. J Colloid Interface Sci 289:427–445

    Article  Google Scholar 

  39. Gun’ko VM, Zarko VI, Voronin EF et al (2002) Impact of some organics on structural and adsorptive characteristics of fumed silica in different media. Langmuir 18:581–596

    Article  Google Scholar 

  40. Raghavan R, Khan SA (1997) Shear-thickening response of fumed silica suspensions under steady and oscillatory shear. J Colloid Interface Sci 185:57–67

    Article  CAS  Google Scholar 

  41. Barthel H, Heinemann M, Stintz M, Wessely B (1998) Particle size of fumed silica. Chem Eng Technol 21:745–752

    Article  CAS  Google Scholar 

  42. Wang Y, Wu XJ, Yang W, Zhai YM, Xie BH, Yang MB (2011) Aggregate of nanoparticles: rheological and mechanical properties. Nanoscale Res Lett 6:114

    Article  CAS  Google Scholar 

  43. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  44. Mueller R, Kammler HK, Wegner K, Pratsinis SE (2003) OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 19:160–165

    Article  CAS  Google Scholar 

  45. Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40:7400–7406

    Article  CAS  Google Scholar 

  46. Sanchez AM (2006) Colloidal gels of fumed silica: microstructure, surface interactions and temperature effects. PhD dissertation, University of North Carolina State, USA

  47. Schmidt-Ott A (1988) New approaches to in situ characterization of ultrafine agglomerates. J Aerosol Sci 19:553–563

    Article  CAS  Google Scholar 

  48. Yziquel F, Carreau PJ, Moan M, Tanguy PA (1999) Rheological modeling of concentrated colloidal suspensions. J Non-Newtonian Fluid Mech 86:133–155

    Article  CAS  Google Scholar 

  49. Kanai H, Amari T (1993) Strain-thickening transition in ferric-oxide suspensions under oscillatory shear. Rheol Acta 32:539–549

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the National Natural Science Foundation of China (grant no. 50873068 and 51073110), Fok Ying Tung Education Foundation (grant no. 122022), the Fundamental Research Funds for the Central Universities (grant no. 2011SCU04A03), and Program for Sichuan Provincial Science Fund for Distinguished Young Scholars (grant no. 2010JQ0014) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XJ., Wang, Y., Wang, M. et al. Structure of fumed silica gels in dodecane: enhanced network by oscillatory shear. Colloid Polym Sci 290, 151–161 (2012). https://doi.org/10.1007/s00396-011-2535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2535-4

Keywords

Navigation