Skip to main content
Log in

Highly monodisperse chemically reactive sub-micrometer particles: polymer colloidal photonic crystals

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Chemically reactive particles with controllable sizes from 383 to 756 nm in very narrow size distributions (well below 5%) have been synthesized by the modified surfactant-free emulsion homopolymerization of inhibitor-free glycidyl methacrylate with the dropwise addition of ionic initiators during the initial reaction of 10 min. The effects of monomer concentration and the amount of initiator were systematically studied on the particle diameter. In addition, changes of the particle diameter and its size distribution during the whole synthesis process were also investigated. The mechanism for the formation of coalesced and highly monodisperse chemically reactive colloidal particles was discussed based on the colloidal stability governed by chemical reaction and physical interactions between the precursor or primary particles. Colloidal photonic crystals with different brilliant visible colors in a large scale were prepared by shearing assembly of such chemically reactive monodisperse particles with spin coating technique. The reflection wavelengths in the visible spectrum range are from the high-order including the second-order light diffraction of the as-prepared PGMA photonic crystals. Such monodisperse chemically reactive particles will be very useful in optical and sensing technologies, and in biochemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Petro M, Svec F, Frechet JMJ (1997) Monodisperse hydrolyzed poly(glycidyl methacrylate-co-ethylene dimethacrylate) beads as a retentive stationary phase for normal-phase HPLC. Anal Chem 69:3131–3139

    Article  CAS  Google Scholar 

  2. McGrath JG, Bock RD, Cathcart JM, Lyon LA (2007) Self-assembly of “paint-on” colloidal crystals using poly(styrene-co-N-isopropylacrylamide) spheres. Chem Mater 19:1584–1591

    Article  CAS  Google Scholar 

  3. Lange B, Fleischhaker F, Zentel R (2007) Functional 3D photonic films from polymer beads. Phys Status Solidi A 204:3618–3635

    Article  CAS  Google Scholar 

  4. Ugelstad J (1991) New developments in biochemical and medical applications of monodisperse polymer particles. Adv Org Co 13:507–518

    CAS  Google Scholar 

  5. Honda M, Kataoka K, Seki T, Takeoka Y (2009) Confined stimuli-responsive polymer gel in inverse opal polymer membrane for colorimetric glucose sensor. Langmuir 25:8349–8356

    Article  CAS  Google Scholar 

  6. Choi SW, Yeh YC, Zhang Y, Sung HW, Xia Y (2010) Uniform beads with controllable pore sizes for biomedical applications. Small 6:1492–1498

    Article  CAS  Google Scholar 

  7. Gu ZZ, Uetsuka H, Takahashi K, Nakajima R, Onishi H, Fujishima A, Sato O (2003) Structural color and the lotus effect. Angew Chem Int Ed 42:894–897

    Article  CAS  Google Scholar 

  8. Russell P (2003) Photonic crystal fibers. Science 299:358–362

    Article  CAS  Google Scholar 

  9. Allard M, Sargent EH (2004) Impact of polydispersity on light propagation in colloidal photonic crystals. Appl Phys Lett 85:5887–5889

    Article  CAS  Google Scholar 

  10. Egen M, Zentel R (2004) Surfactant-free emulsion polymerization of various methacrylates: towards monodisperse colloids for polymer opals. Macromol Chem Phys 205:1479–1488

    Article  CAS  Google Scholar 

  11. Garcia A, Marquez M, Cai T, Rosario R, Hu Z, Gust D, Hayes M, Vail SA, Park CD (2007) Photo-, thermally, and pH-responsive microgels. Langmuir 23:224–229

    Article  CAS  Google Scholar 

  12. Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater 20:2565–2578

    Article  CAS  Google Scholar 

  13. Bonifacio LD, Puzzo DP, Breslav S, Willey BM, McGeer A, Ozin GA (2010) Towards the photonic nose: a novel platform for molecule and bacteria identification. Adv Mater 22:1351–1354

    Article  CAS  Google Scholar 

  14. Reese CE, Guerrero CD, Weissman JM, Lee K, Asher SA (2000) Synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals. J Colloid Interface Sci 232:76–80

    Article  CAS  Google Scholar 

  15. Amos RM, Rarity JG, Tapster PR, Shepherd TJ, Kitson SC (2000) Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 61:2929–2935

    Article  CAS  Google Scholar 

  16. Park SH, Qin D, Xia Y (1998) Crystallization of mesoscale particles over large areas. Adv Mater 10:1028–1032

    Article  CAS  Google Scholar 

  17. Gu ZZ, Fujishima A, Sato O (2002) Fabrication of high-quality opal films with controllable thickness. Chem Mater 14:760–765

    Article  CAS  Google Scholar 

  18. Kawaguchi H (2000) Functional polymer microspheres. Prog Polym Sci 25:1171–1210

    Article  CAS  Google Scholar 

  19. Lange B, Fleischhaker F, Zentel R (2007) Chemical approach to functional artificial opals. Macromol Rapid Commun 28:1291–1311

    Article  CAS  Google Scholar 

  20. Lange B, Metz N, Tahir MN, Fleischhaker F, Theato P, Schroeder HC, Mueller WEG, Tremel W, Zentel R (2007) Functional polymer-opals from core-shell colloids. Macromol Rapid Commun 28:1987–1994

    Article  CAS  Google Scholar 

  21. Mouaziz H, Larsson A, Sherrington DC (2004) One-step batch synthesis of high solids monodisperse styrene/glycidyl methacrylate and styrene/methacrylic acid emulsion copolymers. Macromolecules 37:1319–1323

    Article  CAS  Google Scholar 

  22. Zhang C, Wei Q (2009) Influence of poly(methyl methacrylate) particles with different initial temperature rising ramps on size distribution in dispersion polymerization. J Appl Polym Sci 112:917–925

    Article  CAS  Google Scholar 

  23. Kim H, Ge J, Kim J, Choi SE, Lee H, Lee H, Park W, Yin Y, Kwon S (2009) Structural color printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 3:534–540

    Article  CAS  Google Scholar 

  24. Reculusa S, Perrier-Cornet R, Agricole B, Heroguez V, Buffeteau T, Ravaine S (2007) Langmuir-Blodgett films of micron-sized organic and inorganic colloids. Phys Chem Chem Phys 9:6385–6390

    Article  CAS  Google Scholar 

  25. Zhang KQ, Liu XY (2004) In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature 429:739–743

    Article  CAS  Google Scholar 

  26. Hatton B, Mishchenko L, Davis S, Sandhage KH, Aizenberg J (2010) Assembly of large-area, highly ordered, crack-free inverse opal films. Proc Natl Acad Sci U S A 107:10354–10359

    Article  CAS  Google Scholar 

  27. Sun ZQ, Chen X, Zhang JH, Chen ZM, Zhang K, Yan X, Wang YF, Yu WZ, Yang B (2005) Nonspherical colloidal crystals fabricated by the thermal pressing of colloidal crystal chips. Langmuir 21:8987–8991

    Article  CAS  Google Scholar 

  28. Jiang P, McFarland MJ (2004) Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J Am Chem Soc 126:13778–13786

    Article  CAS  Google Scholar 

  29. Mihi A, Ocana M, Miguez H (2006) Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv Mater 18:2244–2249

    Article  CAS  Google Scholar 

  30. Jiang P, Prasad T, McFarland MJ, Colvin VL (2006) Two-dimensional nonclose-packed colloidal crystals formed by spin coating. Appl Phys Lett 89:011908/1–011908/3

    CAS  Google Scholar 

  31. Ge J, Kwon S, Yin Y (2010) Niche applications of magnetically responsive photonic structures. J Mater Chem 20:5777–5784

    Article  CAS  Google Scholar 

  32. Shereda LT, Larson RG, Solomon MJ (2008) Local stress control of spatiotemporal ordering of colloidal crystals in complex flows. Phys Rev Lett 101:038301/1–038301/4

    Article  CAS  Google Scholar 

  33. Giuliani M, Gonzalez-Vinas W, Poduska KM, Yethiraj A (2010) Dynamics of crystal structure formation in spin-coated colloidal films. J Phys Chem Lett 1:1481–1486

    Article  CAS  Google Scholar 

  34. Wang D, Moehwald H (2004) Rapid fabrication of binary colloidal crystals by stepwise spin-coating. Adv Mater 16:244–247

    Article  CAS  Google Scholar 

  35. Migonney V, Lacroix MD, Douzon C, Jozefowicz M (1992) Chemical modifications of insoluble polystyrene derivatives. J Appl Polym Sci 46:1151–1158

    Article  CAS  Google Scholar 

  36. Reis AV, Fajardo AR, Schuquel ITA, Guilherme MR, Vidotti GJ, Rubira AF, Muniz EC (2009) Reaction of glycidyl methacrylate at the hydroxyl and carboxylic groups of poly(vinyl alcohol) and poly(acrylic acid): Is this reaction mechanism still unclear? J Org Chem 74(10):3750–3757

    Article  CAS  Google Scholar 

  37. Vanderhoff JW (1981) The formation of coagulum in emulsion polymerization. ACS Sym Ser 165:199–208

    Article  CAS  Google Scholar 

  38. Fitch RM, Prenosil MB, Sprick KJ (1969) Mechanism of particle formation in polymer hydrosols. I. Kinetics of aqueous polymerization of methyl methacrylate. J Polym Sci Polym Symp 27:95–118

    Google Scholar 

  39. Zhang MG, Weng ZX, Huang ZM, Pan ZR (2003) Study on the formation mechanism of monodisperse particles in the emulsifier-free emulsion polymerization of methyl methacrylate and butyl acrylate. Chin J Polymer Sci 21:77–85

    Google Scholar 

  40. Smigol V, Svec F, Hosoya K, Wang Q, Frechet JMJ (1992) Monodisperse polymer beads as packing material for high-performance liquid chromatography. Synthesis and properties of monodisperse polystyrene and poly(methacrylate) latex seeds. Angew Makromol Chem 195:151–164

    Article  CAS  Google Scholar 

  41. Maxwell IA, Morrison BR, Napper DH, Gilbert RG (1991) Entry of free radicals into latex particles in emulsion polymerization. Macromolecules 24:1629–1640

    Article  CAS  Google Scholar 

  42. Kim SH, Park HS, Choi JH, Shim JW, Yang SM (2010) Integration of colloidal photonic crystals toward miniaturized spectrometers. Adv Mater 22:946–950

    CAS  Google Scholar 

  43. Reichelt S, Gohs U, Simon F, Fleischmann S, Eichhorn KJ, Voit B (2008) Immobilization of a hyperbranched polyester via grafting-to and electron beam irradiation. Langmuir 24:9392–9400

    Article  CAS  Google Scholar 

  44. Bertone JF, Jiang P, Hwang KS, Mittleman DM, Colvin VL (1999) Thickness of dependence of the optical properties of ordered silica-air and air-polymer photonic crystals. Phys Rev Lett 83:300–303

    Article  CAS  Google Scholar 

  45. Calvo ME, Sánchez-Sobrado O, Colodrero S, Míguez H (2009) Control over the structural and optical features of nanoparticle-based one-dimensional photonic crystals. Langmuir 25:2443–2448

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge St. John’s University for the start-up funding and Seed Grant support. And we thank Dr. David Sarno from Queensborough Community College for the help with SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Z., Zou, C., Syed, S. et al. Highly monodisperse chemically reactive sub-micrometer particles: polymer colloidal photonic crystals. Colloid Polym Sci 290, 141–150 (2012). https://doi.org/10.1007/s00396-011-2532-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2532-7

Keywords

Navigation