Skip to main content
Log in

Magnetic switchable alginate beads

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Calcium alginate beads are enclosed in a wide range of products including food, pharmaceuticals, and cosmetic formulations. The biopolymer matrix is often used to stabilize active ingredients and to provide a controlled release under well-defined conditions. In this context, it is of high interest to study the magnetic-induced attraction, elongation, and rupture of capsules or beads. In this work, we synthesized new types of magnetic switchable alginate beads. The magnetic sensitivity was achieved by incorporation of magnetic nanoparticles (MNPs) within the alginate gel. We measured the mechanical properties of single alginate beads in squeezing experiments, the evaporation of water and the magnetic sensitivity by stimulation of these beads in external fields. In all these measurements, the alginate and the nanoparticle concentration were systematically varied. We could show that the incorporation of MNPs generates a magnetic response of the beads and reduces the evaporation of water but has no influence on the mechanical stability of the beads during compression. Calculations of the shear modulus by means of the squeezing data result in good agreement in comparison to the shear moduli measured by rheological frequency sweep tests. With scanning electron microscopy, we could analyze the molecular structure of such composite systems, and we observed a homogeneous distribution of the MNPs within the gel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bevan DN, Gilson CD, Thomas A (1995) Biotechnol Tech 9:913

    Article  CAS  Google Scholar 

  2. Kuo CK, Ma PX (2001) Biomaterials 22:511

    Article  CAS  Google Scholar 

  3. Hester-Reilly HJ, Shapley NC (2007) J Magn Reson 188:168

    Article  CAS  Google Scholar 

  4. Jen AC, Wake MC, Mikos AG (1995) Biotechnol Bioeng 50:357–364

    Article  Google Scholar 

  5. Smidsrød O, Skjåk-Bræk G (1990) Trends Biotechnol 8:71–78

    Article  Google Scholar 

  6. Martinsen A, Storrø I, Skjåk-Bræk G (1992) Biotechnol Bioeng 39:186–194

    Article  CAS  Google Scholar 

  7. Indergaard M, Østergaard K (1991) In: Gury MD, Blunden G (eds) Seaweed resources in Europe: use and potential. John Wiley & Sons Ltd, Chichester, pp 169–184

    Google Scholar 

  8. Mørch ÝA, Donati I, Strand BL, Skjåk-Bræk G (2006) Biomacromolecules 7:1471–1480

    Article  Google Scholar 

  9. Hassan RM, Makhlouf MT, El-Shatoury SA (1992) Colloid Polym Sci 270:1237–1242

    Article  CAS  Google Scholar 

  10. Murano E (1998) J Appl Ichthyol 14:245

    Article  CAS  Google Scholar 

  11. Banerjee A, Nayak D, Lahiri S (2007) Biochem Eng J 33:260

    Article  CAS  Google Scholar 

  12. Chandy T, Mooradian DL, Rao GHR (1999) J Artif Organs 23:894

    Article  CAS  Google Scholar 

  13. Hochmuth RM, Waugh RE (1987) Annu Rev Physiol 49:209

    Article  CAS  Google Scholar 

  14. Smidsrød O (1974) Faraday Disc Chem Soc 57:263

    Article  Google Scholar 

  15. Klein J, Stock J, Vorlop KD (1983) Eur J Appl Microbiol Biotechnol 18:257

    Article  Google Scholar 

  16. Gal A, Nussinovitch A (2007) J Pharm Sci 96:168

    Article  CAS  Google Scholar 

  17. Souza KC, Ardisson JD, Sousa EMB (2009) J Mater Sci Mater Med 20:507

    Article  CAS  Google Scholar 

  18. Babincova M, Cicmanec P, Altanerova V, Altaner C, Babinec P (2002) Bioelectrochemistry 55:17

    Article  CAS  Google Scholar 

  19. Liu TY, Hu SH, Liu KH, Liu DM, Chen SY (2006) J Magn Magn Mater 304:e397

    Article  CAS  Google Scholar 

  20. Liu TY, Hu SH, Liu KH, Liu DM, Chen SY (2006) Langmuir 22:5974

    Article  CAS  Google Scholar 

  21. Hu SH, Liu TY, Liu DM, Chen SY (2007) Macromolecules 40:6786

    Article  CAS  Google Scholar 

  22. Hu SH, Liu TY, Huang HY, Liu DM, Chen SY (2008) Langmuir 24:239

    Article  CAS  Google Scholar 

  23. Liu TY, Hu SH, Liu KH, Shaiu RS, Liu DM, Chen SY (2008) Langmuir 24:13306

    Article  CAS  Google Scholar 

  24. Wang FQ, Li P, Zhang JP, Wang AQ, Wei Q (2010) Drug Dev Ind Pharm 36:867

    Article  CAS  Google Scholar 

  25. Liu HX, Wang CY, Gao QX, Chen JX, Ren BY, Liu XX (2009) Int J Pharmaceutics 376:92

    Article  CAS  Google Scholar 

  26. Matsumoto T, Mashiko K (1990) Biopolymers 29:1707

    Article  CAS  Google Scholar 

  27. Smidsrød O, Haug A (1965) Acta Chem Scand 19:329

    Article  Google Scholar 

  28. Nussinovitch A, Peleg M (1990) J Texture Studies 21:51

    Article  Google Scholar 

  29. Thu B, Bruheim P, Espevik T, Smidsrød O, Soon-Shiong P, Skjak-Bræk G (1996) Biomaterials 17:1069

    Article  CAS  Google Scholar 

  30. Haug A, Smidsrød O (1965) Acta Chem Scand 19:341

    Article  CAS  Google Scholar 

  31. Smidsrød O (1974) Faraday Discuss Chem Soc 57:263

    Article  Google Scholar 

  32. Yamagiwa K, Kozawa T, Ohkawa A (1995) J Chem Eng Jpn 28:462

    Article  CAS  Google Scholar 

  33. Martinsen A, Skjak-Bræk G, Smidsrød O (1989) Biotechnol Bioeng 33:79

    Article  CAS  Google Scholar 

  34. Chang KS, Olbricht WL (1993) J Fluid Mech 250:587

    Article  CAS  Google Scholar 

  35. Pieper G, Rehage H, Barthès-Biesel D (1998) J Colloid Interface Sci 202:293

    Article  CAS  Google Scholar 

  36. Husmann M, Rehage H, Dhenin E, Barthès-Biesel D (2005) J Colloid Interface Sci 282:109

    Article  CAS  Google Scholar 

  37. Leick S, Degen P, Henning S, Suter D, Rehage H (2010) Phys Chem Chem Phys 12:2950

    Article  CAS  Google Scholar 

  38. Liu KK, Williams DR, Briscoe B (1996) J Physical Review E 54:6673

    Article  CAS  Google Scholar 

  39. Rachik M, Barthès-Biesel D, Carin M, Edwards-Levy F (2006) J Colloid Interface Sci 301:217

    Article  CAS  Google Scholar 

  40. Carin M, Barthès-Biesel D, Andrei DC (2003) Biotechnol Bioeng 82:207

    Article  CAS  Google Scholar 

  41. Wan LQ, Jiang J, Arnold DE, Guo XE, Lu HH, Mow VC (2008) Cell Mol Bioeng 1:93

    Article  CAS  Google Scholar 

  42. Degen P, Leick S, Rehage H (2009) Z Phys Chem Int Ed 223:1079

    Article  CAS  Google Scholar 

  43. Edwards-Lévy F, Lévy MC (1999) Biomaterials 20:2069

    Article  Google Scholar 

  44. Rehor L, Canaple Z, Zhang D, Hunkeler J (2001) J Biomater Sci Polymer Ed 12:157

    Article  CAS  Google Scholar 

  45. Rodriguez F, Patel SK, Cohen C (1990) J Appl Polym Sci 40:285

    Article  CAS  Google Scholar 

  46. Khalafalla SE, Reimers GW (1980) IEEE Transactions ons on Magnetics 16:455

    Google Scholar 

  47. Sun G, Zhang Z (2002) Int J Pharm 242:307

    Article  CAS  Google Scholar 

  48. Wloka M, PhD Thesis, University of Dortmund, Germany, 2006

  49. Storker TM, Kurt ID, Skjåk-Bræk G, Smidsrød O (1992) Carbohydr Polym 19:279

    Article  Google Scholar 

  50. Zhang J, Daubert CR, Foegeding EA (2007) J Food Eng 80:157

    Article  CAS  Google Scholar 

  51. Mitchell JR, Blanshard JM (1976) J Texture Studies 7:219

    Article  CAS  Google Scholar 

  52. LeRoux MA, Guilak F, Setton LA (1999) J Biomed Mater Res 47:46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Michael Paulus, member of the Delta Dortmund for providing XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Degen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 402 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degen, P., Leick, S., Siedenbiedel, F. et al. Magnetic switchable alginate beads. Colloid Polym Sci 290, 97–106 (2012). https://doi.org/10.1007/s00396-011-2524-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2524-7

Keywords

Navigation