Skip to main content
Log in

A dynamic study on nonlinear viscoelastic behavior of isotactic polypropylene/carbon black composite melts

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The influence of the filler loading and the kinetic aggregation process on the nonlinear viscoelastic behavior of the isotactic polypropylene/carbon black composite melts is studied. The limit of linearity decreases with increasing filler loading. The composite melt with a percolating rheological network has an additional strain-softening process at the low strains which is attributed to the breakdown of the filler network. The simultaneous measurement of the conductivity during the strain sweep demonstrates that the rheological network is more easy to be broken than the conductive network, and that some of the aggregated structures formed during melt annealing can be retained even after experiencing high strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102

    Article  CAS  Google Scholar 

  2. Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34:852–858

    Article  CAS  Google Scholar 

  3. Sternstein SS, Zhu AJ (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273

    Article  CAS  Google Scholar 

  4. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  CAS  Google Scholar 

  5. Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870

    Article  Google Scholar 

  6. Frohlich J, Niedermeier W, Luginsland HD (2005) The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Appl Sci Manuf 36:449–460

    Article  Google Scholar 

  7. Zhu ZY, Thompson T, Wang SQ, Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824

    Article  CAS  Google Scholar 

  8. Meier JG, Mani JW, Kluppel M (2007) Analysis of carbon black networking in elastomers by dielectric spectroscopy. Phys Rev B 75:054202

    Article  Google Scholar 

  9. Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196

    Article  CAS  Google Scholar 

  10. Bahloul W, Bounor-Legare V, David L, Cassagnau P (2010) Morphology and viscoelasticity of PP/TiO2 nanocomposites prepared by in situ sol–gel method. J Polym Sci, Part B: Polym Phys 48:1213–1222

    Article  CAS  Google Scholar 

  11. Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44:2455–2462

    Article  CAS  Google Scholar 

  12. Cassagnau P, Melis F (2003) Non-linear viscoelastic behaviour and modulus recovery in silica filled polymers. Polymer 44:6607–6615

    Article  CAS  Google Scholar 

  13. Heinrich G, Kluppel M (2002) Recent advances in the theory of filler networking in elastomers. Adv Polymer Sci 160:1–44

    Article  CAS  Google Scholar 

  14. Huang S, Liu Z, Yin C, Wang Y, Gao Y, Chen C, Yang M (2011) Enhancement effect of filler network on isotactic polypropylene/carbon black composite melts. Colloid Polym Sci. doi:10.1007/s00396-011-2489-6

  15. Huang S, Liu Z, Yin C, Wang Y, Gao Y, Chen C, Yang M (2011) Dynamic electrical and rheological percolation in isotactic poly(propylene)/carbon black composites. Macromol Mater Eng 296. doi:10.1002/mame.201100150

  16. Pryamitsyn V, Ganesan V (2006) Origins of linear viscoelastic behavior of polymer–nanoparticle composites. Macromolecules 39:844–856

    Article  CAS  Google Scholar 

  17. Meier JG, Kluppel M (2008) Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromol Mater Eng 293:12–38

    Article  CAS  Google Scholar 

  18. Kluppel M, Schuster RH, Heinrich G (1997) Structure and properties of reinforcing fractal filler networks in elastomers. Rubber Chem Tech 70:243–255

    Article  CAS  Google Scholar 

  19. Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transitions. Adv Polymer Sci 134:165–234

    Article  CAS  Google Scholar 

  20. Wu G, Zheng Q (2004) Estimation of the agglomeration structure for conductive particles and fiber-filled high-density polyethylene through dynamic rheological measurements. J Polym Sci, Part B: Polym Phys 42:1199–1205

    Article  CAS  Google Scholar 

  21. Rong W, Pelling AE, Ryan A, Gimzewski JK, Friedlander SK (2004) Complementary TEM and AFM force spectroscopy to characterize the nanomechanical properties of nanoparticle chain aggregates. Nano Lett 4:2287–2292

    Article  CAS  Google Scholar 

  22. Skipa T, Lellinger D, Bohm W, Saphiannikova M, Alig I (2010) Influence of shear deformation on carbon nanotube networks in polycarbonate melts: Interplay between build-up and destruction of agglomerates. Polymer 51:201–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (grant no. 20100181110029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengying Liu or Mingbo Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Liu, Z., Yin, C. et al. A dynamic study on nonlinear viscoelastic behavior of isotactic polypropylene/carbon black composite melts. Colloid Polym Sci 289, 1927–1931 (2011). https://doi.org/10.1007/s00396-011-2520-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2520-y

Keywords

Navigation