Skip to main content
Log in

Turbulent drag reduction characteristics of poly(acrylamide-co-acrylic acid) in a rotating disk apparatus

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The effects of experimental parameters such as temperature, polymer concentration, and rotational speed of the disk on drag reduction properties of water-soluble copolymer of poly(acrylamide-co-acrylic acid) in a turbulent flow were examined. Drag reduction (DR) efficacy up to 45% was found to be dependent on its medium temperature in a rotating disk apparatus. When the temperature was increased, the copolymer was found to be much susceptible to mechanical degradation, indicating that polymer chain scission becomes more severe at elevated temperatures. In addition, the optimum copolymer concentration for high DR efficacy was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brostow W, Lobland HEH, Reddy T, Singh RP, White L (2007) J Mater Res 22:56

    Article  CAS  Google Scholar 

  2. White CM, Mungal MG (2008) Annu Rev Fluid Mech 40:235

    Article  Google Scholar 

  3. Choi HJ, Lim ST, Lai PY, Chan CK (2002) Phys Rev Lett 89:088302

    Article  CAS  Google Scholar 

  4. Brostow W (2008) J Ind Eng Chem 14:409

    Article  CAS  Google Scholar 

  5. Bizotto VC, Sabadini E (2008) J Appl Polym Sci 110:1844

    Article  CAS  Google Scholar 

  6. Lee K, Kim CA, Lim ST, Kwon DH, Choi HJ, Jhon MS (2002) Colloid Polym Sci 280:779

    Article  CAS  Google Scholar 

  7. Tabor M, de Gennes PG (1986) Europhys Lett 2:519

    Article  CAS  Google Scholar 

  8. Cadot O, Bonn D, Douady S (1998) Phys Fluids 10:426

    Article  CAS  Google Scholar 

  9. Armstrong R, Jhon MS (1984) Chem Eng Commun 30:99

    Article  CAS  Google Scholar 

  10. Brostow W, Majumdar S, Singh RP (1999) Macromol Rapid Commun 20:144

    Article  CAS  Google Scholar 

  11. Brostow W, Ertepinar H, Singh RP (1990) Macromolecules 23:5109

    Article  CAS  Google Scholar 

  12. Bewersdorff HW (1982) Rheol Acta 21:587

    Article  Google Scholar 

  13. Bewersdorff HW (1984) Rheol Acta 23:522

    Article  CAS  Google Scholar 

  14. Hoyt JW, Sellin RHJ (1988) Rheol Acta 27:518

    Article  CAS  Google Scholar 

  15. Smith RE, Tiederman WG (1991) Rheol Acta 30:103

    Article  CAS  Google Scholar 

  16. Shetty AM, Solomon MJ (2009) Polymer 50:261

    Article  CAS  Google Scholar 

  17. Lim ST, Hong CH, Choi HJ, Lai PY, Chan CK (2007) EPL 80:58003

    Article  Google Scholar 

  18. Elbing BR, Winkel ES, Solomon MJ, Ceccio SL (2009) Exp Fluids 47:1033

    Article  CAS  Google Scholar 

  19. Camail M, Margaillan A, Maesano JC, Thuret S, Vernet JL (1998) Polymer 39:3187

    Article  CAS  Google Scholar 

  20. Camail M, Margaillan A, Martin I (2009) Polym Int 58:149

    Article  CAS  Google Scholar 

  21. Camail M, Margaillan A, Thuret S, Vernet JL (1998) Eur Polym J 34:1683

    Article  CAS  Google Scholar 

  22. Burger ED, Chron LG, Perkins TK (1980) J Rheol 24:603

    Article  CAS  Google Scholar 

  23. Khalil MF, Kassab SZ, Elmiligui AA, Naoum FA (2002) J Irrig Drain Eng 128:147

    Article  Google Scholar 

  24. Figueredo RCR, Sabadini E (2003) Colloids Surf A Physicochem Eng Aspects 215:77

    Article  CAS  Google Scholar 

  25. Marhefka JN, Marascalco PJ, Chapman TM, Russell AJ, Kameneva MV (2006) Biomacromolecules 7:1597

    Article  CAS  Google Scholar 

  26. Lim ST, Choi HJ, Lee SY, So JS, Chan CK (2003) Macromolecules 36:5348

    Article  CAS  Google Scholar 

  27. Choi HJ, Jhon MS (1996) Ind Eng Chem Res 35:2993

    Article  CAS  Google Scholar 

  28. Brostow W (1983) Polymer 24:631

    Article  CAS  Google Scholar 

  29. Lee KH, Zhang K, Choi HJ (2010) J Ind Eng Chem 16:499

    Article  CAS  Google Scholar 

  30. Brostow W, Drewniak M, Medvedev NN (1995) Macromol Rapid Commun 4:745

    CAS  Google Scholar 

  31. Brostow W, Drewniak M (1996) J Chem Phys 105:7135

    Article  CAS  Google Scholar 

  32. Brostow W, Pal S, Singh RP (2007) Mater Lett 61:4381

    Article  CAS  Google Scholar 

  33. Caulfield MJ, Qiao GG, Solomon DH (2002) Chem Rev 102:3067

    Article  CAS  Google Scholar 

  34. Sung JH, Kim CA, Choi HJ, Hur BK, Kim JG, Jhon MS (2004) J Macromol Sci B Phys 43:507

    Article  Google Scholar 

  35. Liberatore MW, Pollauf EJ, McHugh AJ (2003) J Non-Newton Fluid Mech 113:193

    Article  CAS  Google Scholar 

  36. Wyatt NB, Liberatore MW (2010) Soft Matter 6:3346

    Article  CAS  Google Scholar 

  37. Cross MM (1965) J Colloid Sci 20:417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research fund (39704-1) both from National Research Foundation of Korea (2010) and that (2007-E-ID25-P-04-0-000) from Ministry of Knowledge Economy (2008), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Choi, H.J. & Jang, C.H. Turbulent drag reduction characteristics of poly(acrylamide-co-acrylic acid) in a rotating disk apparatus. Colloid Polym Sci 289, 1821–1827 (2011). https://doi.org/10.1007/s00396-011-2502-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2502-0

Keywords

Navigation