Skip to main content
Log in

Colloidal crystallization of thermo-sensitive gel spheres of poly (N-isopropyl acrylamide). Influence of degree of cross-linking of the gels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Morphology, phase diagram, and reflection spectroscopy of the colloidal crystals of thermo-sensitive gel spheres, poly (N-isopropylacrylamide) having degrees of cross-linking 10 and 2 mol.% (pNIPAm(200–10) and pNIPAm(200–2)) were studied. Giant colloidal single crystals formed at very low gel concentrations. Critical concentrations of melting increased as the degree of cross-linking decreased in the range from 10 to 0.5 mol.% and/or suspension temperature increased from 20 to 45 °C. The critical concentration decreased sharply as the suspensions were deionized with coexistence of the mixtures of cation- and anion-exchange resins. Density of a gel sphere (gel concentration in weight percent divided by that in volume percent) increased sharply as the degree of cross-linking and/or temperature increased. These results demonstrated that the colloidal crystallization takes place by the extended electrical double layers formed around the gel spheres in addition of the excluded-volume effect of the gels. Most of the researchers including the authors have believed that the crystallization of the gel spheres takes place by the excluded-volume effect. However, the present work clarified that the colloidal interfaces, which are inevitable for the formation of the electrical double layers, are formed firmly between the water phase and gel spheres, though the gel spheres contain a lot of water molecules in the sphere region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Okubo T (1996) Colloid Surf A 109:77

    Article  CAS  Google Scholar 

  2. Alexander S, Chaikin PM, Grant P, Morales Gm Pincus P, Hone D (1984) J Chem Phys 80:5776

    Article  CAS  Google Scholar 

  3. Okubo T (1993) Prog Polym Sci 18:481

    Article  CAS  Google Scholar 

  4. Garbow N, Evers M, Palberg T, Okubo T (2004) J Pjys Condens Matter 16:3835

    Article  CAS  Google Scholar 

  5. Vanderhoff W, van de Hul HJ, Tausk RJM, Overbeek JThG (1970) In: Goldfinger G (ed) Clean surfaces: their preparation and characterization for interfacial studies. Dekker, New York, pp 15–44

    Google Scholar 

  6. Hiltner PA, Papir YS, Krieger IM (1971) J Phys Chem 75:1881

    Article  CAS  Google Scholar 

  7. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) J Colloid Interf Sci 44:330

    Article  CAS  Google Scholar 

  8. Williams R, Crandall RS, Wojtowicz PJ (1976) Phys Rev Lett 37:348

    Article  Google Scholar 

  9. Mitaku S, Ohtsuki T, Enari K, Kishimoto A, Okano K (1978) Jap J Appl Phys 17:305

    Article  CAS  Google Scholar 

  10. Lindsay HM, Chaikin PM (1982) J Chem Phys 76:3774

    Article  CAS  Google Scholar 

  11. Pieranski P (1983) Contemp Phys 24:25

    Article  CAS  Google Scholar 

  12. Ottewill RH (1985) Ber Bunseng Phys Chem 89:517

    CAS  Google Scholar 

  13. Aastuen DJW, Clark NA, Cotter LK, Ackerson BJ (1986) Phys Rev Lett 57:1733

    Article  CAS  Google Scholar 

  14. Pusey PN, van Megen W (1986) Nature 320:340

    Article  CAS  Google Scholar 

  15. Okubo T (1988) Acc Chem Res 21:281

    Article  CAS  Google Scholar 

  16. Sood AK (1991) Solid State Phys 45:2

    Google Scholar 

  17. Okubo T (1988) J Chem Soc Faraday Trans 1(84):1163

    Google Scholar 

  18. Lowen H, Palberg T, Simon R (1993) Phys Rev Lett 70:1557

    Article  Google Scholar 

  19. Okubo T (1994) In: Macro-ion characterization. From dilute solutions to complex fluids. ACS Symp Ser 548. ACS Washington, DC, pp 364–380

  20. Okubo T, Tsuchia A (2002) Forma 17:141

    Google Scholar 

  21. Okubo T (2002) In: Hubbard A (ed) Encyclopedia of surface and colloid science. Marcell Dekker, New York, pp 1300–1309

    Google Scholar 

  22. Okubo T (2005) In: Kinoshita S, Yoshioka S (eds) Structural colors in biological systems. Osaka Univ Press p 267

  23. Okubo T (2008) Polym J 40:882

    Article  CAS  Google Scholar 

  24. Russel WB (1990) Phase Transition 21:127

    Article  Google Scholar 

  25. Dhont JKG, Smits C, Lekkerkerker HNW (1992) J Colloid Interf Sci 152:386

    Article  CAS  Google Scholar 

  26. Verhaeghe NAM, van Blaaderen A (1994) Langmuir 10:1427

    Article  Google Scholar 

  27. Butler S, Harrowell P (1995) Phys Rev E 52:6424

    Article  CAS  Google Scholar 

  28. Okubo T, Tsuchida A (2002) Colloid Polym Sci 280:438

    Article  CAS  Google Scholar 

  29. Heskins M, Guillet JE (1968) J Macromol Sci Chem A2:1441

    Google Scholar 

  30. Schild HG (1992) Prog Polymer Sci 17:163

    Article  CAS  Google Scholar 

  31. Pelton RH, Chibante P (1986) Colloid Surf 20:247

    Article  CAS  Google Scholar 

  32. Pelton R (2000) Adv Colloid Interf Sci 85:1

    Article  CAS  Google Scholar 

  33. Kawaguchi H (2000) Prog Polym Sci 25:1171

    Article  CAS  Google Scholar 

  34. Nayak S, Lyon LA (2005) Angew Chem Int Ed 44:7686

    Article  CAS  Google Scholar 

  35. Shibayama M, Tanaka T (1993) Adv Polym Sci 109:1

    CAS  Google Scholar 

  36. Shibayama M (1998) Macromol Chem Phys 199:1

    Article  CAS  Google Scholar 

  37. Holtz JH, Asher SA (1997) Nature 389:829

    Article  CAS  Google Scholar 

  38. Xia Y, Cates B, Yin Y, Lu Y (2000) Adv Mater 12:693

    Article  CAS  Google Scholar 

  39. Hellweg T, Dewhurst CD, Bruckner E, Kratz K, Eimer W (2000) Colloid Polym Sci 278:972

    Article  CAS  Google Scholar 

  40. Debord JD, Lyon LA (2000) J Phys Chem B 104:6330

    Article  Google Scholar 

  41. Xia Y (2001) Adv Mater 13:369

    Article  CAS  Google Scholar 

  42. Gao J, Hu Z (2002) Langmuir 18:1360

    Article  CAS  Google Scholar 

  43. Okubo T, Hase H, Kimura H, Kokufuta E (2002) Langmuir 18:6783

    Article  CAS  Google Scholar 

  44. Okubo T, Mizutani T, Okamoto J, Kimura K, Tsuchida A, Tauer K, Khrenov V, Kawaguchi H, Tsuji S (2006) Colloid Polym Sci 285:351

    Article  CAS  Google Scholar 

  45. Crassous JJ, Ballauff M, Drechsler M, Schmidt J, Talmon Y (2006) Langmuir 22:2403

    Article  CAS  Google Scholar 

  46. Crassous JJ, Wittemann A, Siebenburger M, Schrinner M, Drechsler M, Ballauff M (2008) Colloid Polym Sci 286:805

    Article  CAS  Google Scholar 

  47. Crassous JJ, Rochette CN, Wittemann A, Schrinner M, Ballauff M (2008) Langmuir 25:7862

    Article  Google Scholar 

  48. Suzuki D, McGrath JG, Kawaguchi H, Lyon LA (2007) J Phys Chem C 111:5667

    Article  CAS  Google Scholar 

  49. Okubo T, Suzuki D, Yamagata T, Katsuno A, Sakurai M, Kimura H, Tsuchida A (2011) Colloid Polym Sci 289:291

    Article  CAS  Google Scholar 

  50. Okubo T, Suzuki D, Yamagata T, Horigome K, Sjibata K, Tsuchida A (2011) Colloid Polym Sci 289:1273

    Google Scholar 

  51. Okubo T (1992) Naturwissenschaften 79:317

    Article  CAS  Google Scholar 

  52. Okubo T (1994) Langmuir 10:1695

    Article  CAS  Google Scholar 

  53. Okubo T (1994) Colloid Polym Sci 271:190

    Article  Google Scholar 

  54. Okubo T (1994) Langmuir 10:3529

    Article  CAS  Google Scholar 

  55. Okubo T (1995) J Colloid Interf Sci 171:55

    Article  CAS  Google Scholar 

  56. Okubo T, Fujita H (1996) Colloid Polym Sci 274:368

    Article  CAS  Google Scholar 

  57. Okubo T, Fujita H, Kiriyama K, Yamaoka H (1996) Colloid Polym Sci 274:73

    Article  CAS  Google Scholar 

  58. Okubo T, Yoshimi H, Shimizu T, Ottewill RH (2000) Colloid Polym Sci 278:469

    Article  CAS  Google Scholar 

  59. Okubo T, Kimura H, Hase H, Lovell PA, Errington N, Thongnoi S (2005) Colloid Polym Sci 283:393

    Article  CAS  Google Scholar 

  60. Okubo T (1986) J Chem Soc Faraday Trans 1(82):3163

    Google Scholar 

Download references

Acknowledgments

D.S. acknowledges Grant-in-Aid for Young Scientists (A) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (22685024). Financial supports to T.O. from the Ministry of Education, Culture, Sports, Science and Technology, Japan for Exploratory Research and those to D.S., T.O., and A.T. from Japan Society for the promotion of Science for Scientific Research (B) are highly appreciated. The research funds from REX Co. (Tokyo) to T.O. are thanked deeply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, D., Horigome, K., Yamagata, T. et al. Colloidal crystallization of thermo-sensitive gel spheres of poly (N-isopropyl acrylamide). Influence of degree of cross-linking of the gels. Colloid Polym Sci 289, 1799–1808 (2011). https://doi.org/10.1007/s00396-011-2499-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2499-4

Keywords

Navigation